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1.1 Overview: Statistical Inference, Samples,
Populations, and Experimental Design

-Use of Scientific Data
-Variability in Scientific Data
-The Role of Probability

Example 1.2 Often the nature of the scientific study will dictate the role that
probability and deductive reasoning play in statistical inference. Exercise 9.40 on
page 297 provides data associated with a study conducted at the Virginia
Polytechnic Institute and State University on the development, of a relationship
between the roots of trees and the action of a fungus. Minerals are transferred from
the fungus to the trees and sugars from the trees to the fungus. Two samples of 10
northern red oak seedlings are planted in a greenhouse, one containing seedlings
treated with nitrogen and one containing no nitrogen. All other environmental
conditions are held constant. All seedlings contain the fungus Pisolithus tinctorus.
More details are supplied in Chapter 9. The stem weights in grams were recorded
after the end of 140 days. The data are given in Table 1.1.
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Table 1.1: Data Set for Example 12
No Nitrogen Nitrogen

0.32 0.26
0.53 0.43
0.28 0.47
0.37 0.49
0.47 0.52
0.43 0.75
0.36 0.79
042 0.86
0.38 0.62
043 0.46
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Figure 1.1: A dot plot of stem weight data.
5
Probability
Population Sample
Statistical Inference
Figure 12: Fundamental relationship between probability and inferential statistics.
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1.3 Sampling Procedures; Collection of Data

Simple Random Sampling
Experimental Design

Example 1.3:1 A corrosion study was made in order to determine whether
corrosion of an aluminum metal coated with a corrosion retardation substance
reduced the amount of corrosion. The coating is a protectant that is advertised to
minimize fatigue damage in this type of material. Also of interest is the influence of
humidity on the amount of corrosion. A corrosion measurement can be expressed
in thousands of cycles to failure. Two levels of coating, no coating and chemical
corrosion coating, were used. In addition, the two relative humidity levels are 20%
relative humidity and 80% relative humidity.

Table 1.2: Data for Example 1.3

Average Corrosion in

Coating Humidity Thousands of Cycles to Failure
0, Q 5
Uncoated R )71\
80% 350
. ) 50
Chemical Corrosion o l?‘j)
80% 1550
2000
wll Coating
3 1000
:
Uncoated
0
Q 20% 80%

Hunudity

Figure 1.3: Corrosion results for Example 1.3
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Measures

Y

Measures of Location Measures of variability
(Central Tendency) (Central Dispersion)
Mean Variance
Median Standard Deviation

Mode Range

1.4 Measures of Location: The Sample Mean and
Median

Definition 1.1: | Suppose that the observations in a sample are 21, za, . .. ,: tn. The sample mean,
denoted by z, is

n
Z Ti Ty1+xo4---+Tn
zZ= e ——_
. n n
i=1

Definition 1.2: | Given that the observations in a sample are z,, x5, ... ,: r,, arranged in increasin,
1 2 n 5
order of magnitude, the sample median is
. T(nt1)/2s if nis odd,
T = i —_—
HeenmE Zp/041), niseven.

As an example, suppose the data set is the following: 1.7, 2.2, 3.9, 3.11, and
14.7. The sample mean and median are, respectively,

=512, F=34.

10
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Clearly, the mean is influenced considerably by the presence of the extreme obser-
vation, 14.7, whereas the median places emphasis on the true “center” of the data
set. In the case of the two-sample data set of Example 1.2, the two measures of

central tendency for the individual samples are

T (no nitrogen) = 0.399 gram,
. : 0.38 +0.42
z (no nitrogen) = + = 0.400 gram,
Z (nitrogen) = 0.565 gram,
- . 0.49 4+ 0.52
Z (nitrogen) = % = 0.505 gram.
X = ?.565

Te T

025 030 035 040 045 050 055 060 065 0.70 0.75 0.80 0.85 0.90

LI T el T T

Figure 1.4: Sample mean as a centroid of the with-nitrogen stem weight.
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Other Measures of Locations

-Trimmed Mean

e.g., in computing 10% trimmed mean, we cancel
the highest 10% and the lowers 10% of our data
-Benefit:

l)Having a mean close to median

2) Reduce the effect of very high and very low
value

size is 10 for each sample. So for the without-nitrogen group the 10% trimmed
mean is given by

032+ 037+ 047+ 0.43 4+ 0.36 + 0.42 4+ 0.38 + 0.43

Tir(io) = 3 = (0.39750,

and for the 10% trimmed mean for the with-nitrogen group we have

_ 043 +047+049+0.52+0.75+0.79 + 0.62 + 0.46 .
\*I[I'( 10) = 2 = 0.56625.

12
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Measures of Variability
-Variance and Standard deviation
-Range

- A
The sample variance, denoted by s, is given by

n

.5,‘_’ . Z (‘i;l’ :il)j )

i=1

The sample standard deviation, denoted by s, is the positive square root of
5 ;
s°, that is,

(X}

13

Sxample 1.4:/In an example discussed extensively in Chapter 10, an engineer is interested in
testing the “bias” in a pH meter. Data are collected on the meter by measuring
the pH of a neutral substance (pH = 7.0). A sample of size 10 is taken, with results
given by

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08.

The sample mean 7 is given by

= 7.07+7.00 + 71'(:0 +.-+7.08 — 7.0250.

The sample variance s2 is given by
’ 1 . ! y
sl:guunfzwmz+ﬁﬂuftmm1+w4071mml
+ -+ +(7.08 — 7.025)%] = 0.001939.
As a result, the sample standard deviation is given by

s =v/0.001939 = 0.044.

So the sample standard deviation is 0.0440 with n — 1 = 9 degrees of freedom.

14
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Units for Standard Deviation and Variance????
SD= same data unit
S=same data unit squire

Discrete and Continuous Data

(countable and uncountable)
Example on Discrete Data

-Family size

-number of class student

-Failure rate (number of failure per unit time)
Example on continues Data

-High, weight, width

-Hand strength

-Human lifespan

15

Statistical Modeling, Scientific Inspection,
and Graphical Diagnostics

1) Scatter Plot

At times the model postulated may take on a somewhat complicated form.
Consider, for example, a textile manufacturer who designs an experiment where
cloth specimen that contain various percentages of cotton are produced.
Consider the data in Table 1.3.

Table 1.3: Tensile Strength

Cotton Percentage

Tensile Strength

15
20
25

30

7,79,8,10
19, 20, 21, 20, 22
21; 21, 17, 19,20
8,7,89,10

16
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Figure 1.5: Scatter plot of tensile strength and cotton percentages.
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2) Stem-and-Leaf Plot
e.g., To illustrate the construction of a stem-and-leaf plot, consider the data of Table 1.4,
which specifies the “life” of 40 similar car batteries recorded to the nearest tenth of a
year.
Table 1.4: Car Battery Life
22 41 35 45 32 37 30 26
34 16 31 33 38 31 47 37
25 43 34 36 29 33 39 31
33 31 37 44 32 41 19 34
47 38 32 26 39 30 42 35
Table 1.5: Stem-and-Leaf Plot of Battery Life
Stem Leaf Frequency
1 69 2
2 25669 5
3 0011112223334445567778899 25
4 11234577 8
YA
18
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Table 1.6: Double-Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1. 69 2
2% 2 1
2. 4
3 15
3 10
4 5
4- 3

19

3) Histogram

Mean of Histogram

Class Midpointx
Table 1.7: Relative Frequency Distribution of Battery Life | Mean= %
Class Class Frequency, Relative
Interval Midpoint - Frequency
1.5-1.9 1.7 2 0.050 _17x2+22x1+--+47Xx3
2.0-2.4 2.2 1 0.025 = 211413
2.5-2.9 2.7 4 0.100 =3.4125 +1+ +
3.0-34 3.2 15 0.375 :
3.5-3.9 3.7 10 0.250
4.0-44 4.2 5 0.125
4.5-4.9 4.7 3 0.075
0.375 r
s
§ 0.250
g
w
@
2
£ 0.125
[}
«

1y 22 - 27 - 82 @ aF 42 4F
Battery Life (years)

Figure 1.6: Relative frequency histogram.

20
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Figure 1.7: Estimating frequency distribution.
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Figure 1.8: Skewness of data.

21
First Quartile and Third Quartile
Definitions:
« The lower half of a data set is the set of all values that are to the left of the median
value when the data has been put into increasing order.
« The upper half of a data set is the set of all values that are to the right of the median
value when the data has been put into increasing order.
+ The first quartile, denoted by Q1 , is the median of the lower half of the data set. This
means that about 25% of the numbers in the data set lie below Q; and about 75% lie
above Qs .
« The third quartile, denoted by Q; , is the median of the upper half of the data set. This
means that about 75% of the numbers in the data set lie below Q; and about 25% lie
above Qs .
Yy
22
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First, we write data iExample 1: Find the first
and third quartiles of the data set {3, 7, 8, 5,
12, 14, 21, 13, 16, 18}.

in increasing order: 3,5, 7, 8, 12, 13, 14, 16,
18, 21.

Location of Q1: (10+1)*0.25=2/75
Interpolation / -
Q1=value of location 2+0.75*( value of location
2- value of location 3)

Q1=5+0.75*(7-5)=6.5

Location of Q2: (10+1)*0.5=5.5

Q2= (12+13)/2=12.5

Location of Q3: (10+1)*0.75=8.25

Q3=value of location 8+0.25*(value of location
9- value of location 8)
Q3=16+0.25%(18-16)=16.5

Inter quartile range (IQR)=
Q3-Q1

" 1QR =16.5-6.5=10

23
4) Box-and-Whisker Plot or Box Plot
-You have to know to estimate the percentile and quartile
e.g., Nicotine content was measured in a random sample of 40 cigarettes. The data
are displayed in Table 1.8.
Table 1.8: Nicotine Data for Example 1.5
1.09 1.92 231 179 228 174 147 1.97
0.85 1.24 158 203 170 217 255 211
1.86 190 168 151 1.64 0.72 169 1.85
1.82 1.79 246 1.88 208 1.67 1.37 193
1.40 1.64 209 1.75 163 237 175 1.69
In order
0.72 0.85 1.09 124 1.37 14 147 151 158 1.63
164 164 167 168 1.69 1.69 1.7 174 175 1.75
1.79 179 1.82 185 186 1.88 19 192 193 1.97
203 2.08 2.09 211 217 228 231 237 246 2.55
24
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Location of Q1: (40+1)*0.25=10.25
Q1:1.63+0.25*%(1.64-1.63)=1.6325

Q2=(1.75+1.79)/2=1.77

Location of Q3: (40+1)*0.75=30.75
Q3: 1.97+0.75%(2.03-1.97)=2.015 1.5 1QR

IQR=2.015-1.6325=0.3825 IR

1.5I1QR=0.57375

Outlier

Outlier )
\ <$<amm) I
o

TCI 1 ?5 2‘T 0 2I 5

/ \

1 Nicotine \QZ
Figure 1.9: Box-and-whisker plot for Example 1.5
25
Percentile
* Find 62% percentile of Example on slides
number 23
Location of 62% percentile is (n+1)*0.62=6.82
62% percentile=Value of location 6+0.82*(Value of location 7-Value of
location 6)=13+0.82%*(14-13)=13.82
* Find 29% percentile of Example on slides
number 24
Location of 29% percentile is (40+1)*0.29=11.89
29% percentile=Value of location 11+0.89*(Value of location 12-Value of
location 11)=1.64+0.89*(1.64-1.64)=1.64
26
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Probability and Statistics

Chapter 2
Dr. Raed Al Athamneh

Department of Industrial Engineering

Definition 2.1: | The set of all pessible outeomes of a statistical experiment is called the sample
space and is represented by the symbal 8.

FEach outcome in & sample space is called an element or & member of the
sample space, or simply & sample point. If the sample space has s finite number
of elements, we may list the members separated by commas and enclosed in braces.
Thus, the sample space S, of possible outcomes when & coin iz fipped, may be
Written

§={HT},

where H and T correspond to heads and tails, respectively.

Example 2.1 | Consider the experiment of toasing a die. If we are interested in the number that
shows on the top face, the sample space s

5 = {123,458}

If we are interested only in whether the number is even or odd, the sample space
s simply

52 = {even, odd}. 1




Example 2.2: | An experiment consists of flipping & eoin and then fipping it a second time if &

QOCUTS.

If & tail occurs on the first fip, then a die s tossed once. To list

th:: elements of the sample space providing the most information, we construct the
tree diagram of Figure 2.1. The varions paths along the branches of the tree give
the distinct sample points. Starting with the top left branch and moving to the
right along the first path, we get the sample point HH, indicating the possibility
that heads oceurs on two suceessive flips of the eom. Likewise, the sample pomnt
T3 indicates the possibility thas the coin will show a tail followed by & 3 on the

toss of the die. By proceeding along all paths, we see that the sample space is
S={HH, HT, T1, T2, T3, T4, T5, TE}.

First Second Sample
Outcome Dutcoms Paint
——-H HH
e
H=""_
s SN
) HT

T
T2
T3
T4
TS
TE

Figure 2.1: Tree disgram for Fxample 2.2

4

Example 2.3: |Sup'pna_ that three items are selected at random from a mamfacturing process.
Each item is inspected and classified defective, [, or nondefective, N. To list the
clements of the sample space providing the musr. mfnrmatl.on we construct the tree
diagram of Figure 2.2. Now, the various paths along the branches of the tree give
the distinet sample points. Smrt.mg with the first pach, we get the sample point
DD, indicating the possibility that all three items inspected are defective. As we

proceed along the other paths, we see that the sample space is
S={DD0D, DDN. DND, DNN, NDD. NDN, NNID, NNN}.

First Saecond Third  Sample
tem Item ltem Puoint
__—D DoD
D=
- T —
D{ N DDN
R | DND
TN
TN Dmv
NDD
NON
NND
NN

Figure 22 Tree disgram for Fxample 2.3
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Definition 2.2: | An event is a subset of a sample space.

, where t 1s the life in years of a certain
electronic component, then the event A tha

Example ?‘--1:| Given the sample space § = {t | t > 0}
that the component fails before the end of
the fifth year is the subset 4 = {t | 0 <t < 5}.

Definition 2.3:

The complement of an event A with respect to 5 is the subset of all elements
of § that are not in 4. We denote the complement of A by the symbaol A’.

Example 2 5:| Let R be the event that a red card is selected from an ordinary deck of 52 playing

cards, and let § be the entire deck. Then R’ is the event that the card selected
from the deck is not a red card but a black card.

Example 2.6:| Consider the sample space
S§ = {book, cell phone, mp3, paper, stationery, laptop}.

Let A = {book, stationery, laptop, paper}. Then the complement of 4 is A" =
{eell phone, mp3}. . |

Definition 2.4:

The intersection of two events A and B, denoted by the symbol A N B, is the
event containing all elements that are common to 4 and B.

Example 3.7:' Let E be the event that a person selected at random in a classroom is majoring in
engineering, and let I be the event that the person is female. Then E N F is the
event of all female engineering students in the classroom. - |

Example 2.8:/Let V = {a.e,i,0,u} and C' = {l,r,s,t}; then it follows that V' N C' = ¢. That is,
V' and C have no elements in common and, therefore, cannot both simultaneously
oCeur. o |

For certain statistical experiments it is by no means unusual to define two
events, 4 and B, that cannot both occur simultaneously. The events A and B are
then said to be mutually exclusive. Stated more formally, we have the following
definition:

Definition 2.5:

Two events 4 and B are mutually exclusive, or disjoint, if AN B = &, that
is, if A and B have no elements in common.

Definition 2.6:

The union of the two events A and B, denoted by the symbol AU B, is the event
containing all the elements that belong to 4 or B or both.

Example 2.10:| Let A = {a,b,c} and B = {b,c,d, e}; then AU B = {a,b, c,d, e}. M |

2/16/2020



Example 2.1 1:/ Let P be the event that an employee selected at random from an oil drilling com-
pany smokes cigarettes. Let () be the event that the employee selected drinks
alcoholic beverages. Then the event P U () is the set of all employees who either
drink or smoke or do both.

Example 2. 12‘.‘ EM={z|3<z<09}and N={y|5<y=< 12}, then

MuUN={z|3<z<12}. . ]

The relationship between events and the corresponding sample space can be

llustrated graphically by means of Venn diagrams. In a Venn diagram we let

the sample space be a rectangle and represent events by circles drawn inside the
rectangle. Thus, in Figure 2.3, we see that

ANB = regions 1 and 2,
BnC = regions 1 and 3,

Figure 2.3: Events represented by various regions.

AUC = regions 1,2, 3,4, 5,and 7,
B'n A= regions 4 and 7,
ANBNC = region 1,
(AU B)NC' = regions 2, 6, and 7,

2/16/2020



Figure 2.4: Events of the sample space 5.

In Figure 2.4, we see that events 4, B, and €' are all subsets of the sample
space 5. It is also clear that event B is a subset of event A; event B N C has no
elements and hence B and C' are mutually exclusive; event A M C has at least one
element; and event A U B = A. Figure 2.4 might, therefore, depict a situation
where we select a card at random from an ordinary deck of 52 playing cards and
ohserve whether the following events occur:

A: the card is red,

B: the card is the jack, queen, or king of diamonds,
€ the card is an ace.

Clearly, the event A M C consists of only the two red aces.
Several results that follow from the foregoing definitions, which may easily be
verified by means of Venn diagrams, are as follows:

1. AN =¢. 6. ¢'=8.

2. Augp=A. 7. (A) = A.

3. AnAdA'=¢.

P 8 (ANBY =A'UB.
. 8 =¢. 9. (AUByY =A"nB.

Rule 2.1:

If an operation can be performed in n; ways, and if for each of these ways a second
operation can be performed in ny ways, then the two operations can be performed
together in nyng ways.

cample 2.13:| How many sample points are there in the sample space when a pair of dice is

thrown once?

Solution: The first die can land face-up in any one of n; = 6 ways. For each of these 6§ ways,

the second die can also land face-up in n, = 6 ways. Therefore, the pair of dice
can land in nyny = (6)(6) = 36 possible ways. A

Example 2.1 1:1 A developer of a new subdivision offers prospective home buyers a choice of Tudor,

Solution:

Since ny = 4 and ny = 3, a buyer must choose from

rustic, colonial, and traditional exterior styling in ranch, two-story, and split-level
floor plans. In how many different ways can a buyer order one of these homes?

Exterior Style Floor Plan

Amd——

nyny = (4)(3) = 12 possible homes.

Figure 2.6: Tree diagram for Example 2.14.

10
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Example 2.15:/If a 22-member club needs to elect a chair and a treasurer, how many different
ways can these two to be elected?

Solution: For the chair position, there are 22 total possibilities. For each of those 22 pos-
sibilities, there are 21 possibilities to elect the treasurer. Using the multiplication
rule, we obtain n; x na = 22 x 21 = 462 different ways. i |

The multiplication rule, Rule 2.1 may be extended to cover any number of
operations. Suppose, for instance, that a customer wishes to buy a new cell phone
and can choose from ny = 5 brands, ns = 5 sets of capability, and nz = 4 colors.
These three classifications result in ninana = (5)(5)(4) = 100 different ways for
a customer to order one of these phones. The generalized multiplication rule
covering k operations is stated in the following.

Rule 2.2: |If an operation can be performed in n; ways, and if for each of these a second
operation can be performed in ny ways, and for each of the first two a third
operation can be performed in ny ways, and so forth, then the sequence of k
operations can be performed in nyn, -« - ny, ways.

Example 2.16:| Sam is going to assemble a computer by himself. He has the choice of chips from
two brands, a hard drive from four, memory from three, and an accessory bundle
from five local stores. How many different ways can Sam order the parts?

Solution: Since ny =2, n, =4, ny; =3, and ny = 5, there are
mxngxngxng=2xdx3Ix5b=120

different ways to order the parts. A

11

Example 2.17:| How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and

9 if each digit can be used only once?

Solution: Since the number must be even, we have only n, = 3 choices for the units position.
However, for a four-digit number the thousands position cannot be 0. Hence, we
consider the units position in two parts, 0 or not 0. If the units position is 0 (i.e.,
n; = 1), we have n, = 5 choices for the thousands position, ng = 4 for the hundreds

position, and ng = 3 for the tens position. Therefore, in this case we have a total
of

nynangny = (1)(5)(4)(3) = 60

even four-digit numbers. On the other hand, if the units position is not 0 (ie.,
ny = 2), we have ny = 4 choices for the thousands position, ns = 4 for the hundreds
position, and ny; = 3 for the tens position. In this situation, there are a total of

nNzNzNy = fQ](‘l){'ﬂ(‘j’} =06

Definition 2.7: | A permutation is an arrangement of all or part of a set of ohjects.

Consider the three letters a, b, and ¢. The possible permutations are abe, ach,
bac, bea, cab, and cba. Thus, we see that there are 6 distinct arrangements. Using
Rule 2.2, we could arrive at the answer 6 without actually listing the different
orders by the following arguments: There are n; = 3 choices for the first position.
No matter which letter is chosen, there are always ny = 2 choices for the second
position. No matter which two letters are chosen for the first two positions, there
is only ns = 1 choice for the last position, giving a total of

mingng = (3)(2)(1) = 6 permutations
by Rule 2.2. In general, n distinct objects can be arranged in
n(n—1)(n—2)---(3)(2)(1) ways.

There is a notation for such a number.

12
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Definition 2.8: | For any non-negative integer n, n!, called “n factorial,” is defined as

n! =n(n—1)---(2)(1),

with special case 0l = 1.

Theorem 2.1: [ The number of permutations of n obiects is nl.

Theorem 2.2: | The number of permmutations of n distinct objects taken r at a time is

n!

A A

Example 2.18:| In one year, three awards (research, teaching, and service) will be given to a class
of 25 graduate students in a statistics department. If each student can receive at
most one award, how many possible selections are there?
Solution: Since the awards are distinguishable, it is a permutation problem. The total
number of sample points is
25! 25!

5 == — = (25 3) =13
2Py = gy = 1 = (25)(24)(28) = 13,800,

[

13

Example 2.19:| A president and a treasurer are to be chosen from a student club consisting of 50
people. How many different choices of officers are possible if

(a) there are no restrictions;
(b) A will serve only if he is president:
1 B and €' will serve together or not at all;
d) D) and E will not serve together?
)

Solution: The total number of choices of officers, without any restrictions, is

50! e &
sofh = T (50)(49) = 2450.

(b) Since A will serve only if he is president, we have two situations here: (i) A is
selected as the president, which yields 49 possible outcomes for the treasurer’s
position, or (ii) officers are selected from the remaining 49 people without A,
which has the number of choices 40 P> = (49)(48) = 2352, Therefore, the total
number of choices is 49 + 2352 = 2401.

(¢) The number of selections when B and C serve together is 2. The number of
selections when both B and €' are not chosen is 4o P = 2256, Therefore, the
total number of choices in this situation is 2 4 2256 = 2258,

(d) The number of selections when I} serves as an officer but not F is (2)(48) =
06, where 2 is the number of positions D can take and 48 is the number of
selections of the other officer from the remaining people in the club except
E. The nunber of selections when E serves as an officer but not D is also
(2)(48) = 96. The mumber of selections when both D and E are not chosen
is 45 P = 2256. Therefore, the total number of choices is (2)(96) + 2256 =
2448, This problem also has another short solution: Since D and E can only
serve together in 2 ways, the answer is 2450 — 2 = 2448, i |

14
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Permutations that occur by arranging objects in a circle are called circular
permutations. Two circular permutations are not considered different unless
corresponding objects in the two arrangements are preceded or followed by a dif-
ferent object as we proceed in a clockwise direction. For example, if 4 people are
playing bridge, we do not have a new permutation if they all move one position in
a clockwise direction. By considering one person in a fixed position and arranging
the other three in 3! ways, we find that there are 6 distinct arrangements for the
bridge game.

Theorem 2.3: | The number of permutations of n objects arranged in a circle is (n — 1)L |

So far we have considered permutations of distinet objects. That is, all the
ohjects were completely different or distinguishable. Obviously, if the letters b and
¢ are both equal to x, then the 6 permutations of the letters a, b, and ¢ become
arr, arr, rar, rar, rra, and rra, of which only 3 are distinct. Therefore, with 3
letters, 2 being the same, we have 3!/2! = 3 distinct permutations. With 4 different
letters a, b, ¢, and d, we have 24 distinct permutations. If we let a = b= r and
¢ =d =y, we can list only the following distinct permutations: zryy, ryry, yrry,
yyxx, ryyr, and yryzr. Thus, we have 41/(2! 2!) = 6 distinct permutations.

Theorem 2.4: | The number of distinct permutations of n things of which n, are of one kind, ns
of a second kind, ..., nr of a kth kind is

n!
nylng!--omg!’

15

Example 2.20:|In a college foothall training session, the defensive coordinator needs to have 10
players standing in a row. Among these 10 players, there are 1 freshman, 2 sopho-
mores, 4 juniors, and 3 seniors. How many different ways can they be arranged in
a row if only their class level will be distinguished?

Solution : Directly using Theorem 2.4, we find that the total number of arrangements is
10!

o ara 12600

Theorem 2.5: | The number of ways of partitioning a set of n objects into r cells with n; elements
in the first cell, ny elements in the second, and so forth, is

n n!
My Mgy ..., M, nying!-on,l

where ny +ng +---+np = n.

Example 2.21:|In how many ways can 7 graduate students be assipned to 1 triple and 2 double
hotel rooms during a conference?

Solution: The total number of possible partitions would be

7 T
(3,2 2) BED T 1

16
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In many problems, we are interested in the number of ways of selecting r objects
from n without regard to order. These selections are called combinations. A
combination is actually a partition with two cells, the one cell containing the r
objects selected and the other cell containing the (n — r) objects that are left. The
mumber of such combinations, denoted by

n . n
( ). is usually shortened to ( ).
rn—T r

since the number of elements in the second cell must be n — r.

Theorem 2.6: | The number of combinations of n distinet objects taken r at a time is
n n!
r) rn—r)’

Example 2‘22:‘ A young boy asks his mother to get 5 Game-Boy™ cartridges from his collection
of 10 arcade and 5 sports games. How many ways are there that his mother can
get 3 arcade and 2 sports games?

Solution: The number of ways of selecting 3 cartridges from 10 is

10 10!
(3) TEao—3y 120

The number of ways of selecting 2 cartridges from 5 is

5 51
(2) T

Using the multiplication rule (Rule 2.1) with n; = 120 and n, = 10, we have

(120)(10) = 1200 ways. 1

17

Example 2.23:| How many different letter arrangements can be made from the letters in the word
STATISTICS?
Solution: Using the same argument as in the discussion for Theorem 2.6, in this example we
can actually apply Theorem 2.5 to obtain

10 10!
(3.3,_2.1,1) Symany - o040

Here we have 10 total letters, with 2 letters (S, T') appearing 3 times each, letter
I appearing twice, and letters A and ' appearing once each. On the other hand,
this result can be directly obtained by using Theorem 2.4, . |

18
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Definition 2.9: | The probability of an event A is the sum of the weights of all sample points in
A. Therefore,

0< P(4)<1, P(¢)=0, and P(S)=1.

Furthermore, if 4,, A2, Az, ... is a sequence of mutually exclusive events, then

PAJUAUA;U---) = P(A)) + P(A,) + P(Ag) +--- .

Example 2.24:| A coin is tossed twice. What is the probability that at least 1 head occurs?
Solution: The sample space for this experiment is

S={HH,HT,THTT}.
If the coin is balanced, each of these outcomes is equally likely to oceur. Therefore,

we assign a probability of w to each sample point. Then 4w =1, 0rw=1/4. If A
represents the event of at least 1 head occurring, then
T A

11
A={HHHT,TH}and PA) =7+ 7+ =7 §

19

=+ - - -

ixample 2.25:| A die is loaded in such a way that an even mumber is twice as likely to occur as an
odd number. If F is the event that a number less than 4 occurs on a single toss of
the die, find P(E).

Solution: The sample space is § = {1.2,3,4.5.6}. We assign a probability of w to each
odd number and a probahility of 2w to each even number. Since the sum of the
probabilities must be 1, we have 9w = 1 or w = 1/9. Hence, probabilities of 1/9
and 2/9 are assigned to each odd and even number, respectively. Therefore,

o201 4

E={123}ad P(E)=g+5+5=75 r

20
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Example 2.26:| In Example 2.25, let A be the event that an even number turns up and let B be
the event that a number divisible by 3 occurs. Find P(AU B) and P(AN B).
Solution: For the events A = {2,4,6} and B = {3,6}, we have

AUB=1{2,3,4,6} and AN B = {6}.

By assigning a probability of 1/9 to each odd number and 2/9 to each even number,
we have
2.1 2 22 2
§+§+§+§=§ and P(Aﬁ8)=ﬁ 1
If the sample space for an experiment contains N elements, all of which are
equally likely to occur, we assign a probability equal to 1/N to each of the N
points. The probahility of any event A containing n of these N sample points is
then the ratio of the number of elements in A to the number of elements i S.

P(AUB) =

21

Rule 2.3: |If an experiment can result in any one of N different equally likely outcomes, and
if exactly n of these outcomes correspond to event A, then the probability of event
Als

P(A) = %

Example 2.27:| A statistics class for engineers consists of 25 industrial, 10 mechanical, 10 electrical,
and 8 civil engineering students. If a person is randomly selected by the instrue-
tor to answer a question, find the probability that the student chosen is (a) an
industrial engineering major and (b) a civil engineering or an electrical engineering
major.

Solution: Denote by I, M, E, and C the students majoring in industrial, mechanical, electri-
cal, and civil engineering, respectively. The total number of students in the class
is 53, all of whom are equally likely to be selected.

(a) Since 25 of the 53 students are majoring in industrial engineering, the prob-
ahility of event I, selecting an industrial engineering major at random, is

25
P(I)==.
@ 53
(b) Since 18 of the 53 students are civil or electrical engineering majors, it follows
that
P(CUE)= 3—8 o |
B

22
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Theorem 2.7:

Proof:

If A and B are two events, then

P(AUB)= P(A)+ P(B)— P(AnB).

Figure 2.7: Additive rule of probahility.

Consider the Venn diagram in Figure 2.7. The P{A U B) is the sum of the prob-
abilities of the sample points in A U B. Now P(A) + P(B) is the sum of all
the probabilities in A plus the sum of all the probabilities in B. Therefore, we
have added the probabilities in (4 M B) twice. Since these probabilities add up
to P(A N B), we must subtract this probability once to obtain the sum of the
probabilities in 4 U B, A

23

Corollary 2.1:

Corollary 2.2:

Corollary 2.3:

Theorem 2.8:

If A and B are mutually exclusive, then

P(AUB) = P(A) + P(B).

Corollary 2.1 is an immediate result of Theorem 2.7, since if 4 and B are
mutually exclusive, AN B = 0 and then P(AN B) = P(¢) = 0. In general, we can
write Corollary 2.2.

If 41, Az,..., Ay are mutually exclusive, then

P(AyUAzU---U Ap) = P(4)) + P(A2) + -~ + P(Aqg).

A collection of events {A,, A,,..., A} of asample space S is called a partition
of Sif Ay, Az, ..., A are mutually exclusive and 4; U4, U--- U A, = §. Thus,
we have
IE:Ay, Asiio, A, is a partition of sample space S, then

P(A,UA,U---UA,) = P(A,) + P(4;) + -+ + P(4,) = P(S) = 1.

As one might expect, Theorem 2.7 extends in an analogous fashion.

For three events 4, B, and C,

P(AUBUC) = P(A) + P(B) + P(C)
— P(ANB)— P(ANC) — P(BNC) + P(ANBNC).

24
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Example 2.30:| What is the probability of getting a total of 7 or 11 when a pair of fair dice is
tossed?

Solution: Let A be the event that 7 occurs and B the event that 11 comes up. Now, a total
of T occurs for 6 of the 36 sample points, and a total of 11 oceurs for only 2 of the
sample points. Since all sample points are equally likely, we have P(A4) = 1/6 and
P(B) = 1/18. The events A and B are mutually exclusive, since a total of 7 and
11 cannot both occur on the same toss. Therefore,

P(AUB) = P(A) + P(B) =3 + == = 2.

This result could also have been obtained by counting the total number of points
for the event A U B, namely 8, and writing

n 8 2
P{AUB)=.\7=E=§‘

Example 2.31:| If the probabilities are, respectively, 0.09, 0.15, 0.21, and 0.23 that a person pur-
chasing a new automobile will choose the color green, white, red, or blue, what is
the probability that a given buyer will purchase a new automobile that comes in
one of those colors?

Solution: Let G, W, R, and B be the events that a buyer selects, respectively, a green,
white, red, or blue automobile. Since these four events are mutually exclusive, the
probability is

P(GUWURUB)=P(G)+ P(W) + F(R)+ F(B)
=0.09 +0.15 + 0.21 + 0.23 = 0.68. 1
Often it is more difficult to caleulate the probability that an event occurs than
it is to caleulate the probability that the event does not occur. Should this be the
case for some event A, we simply find P(A4’) first and then, using Theorem 2.7,

Yo find P(A) by subtraction.
25
Theorem 2.9:|If A and A’ are complementary events, then
P{A)4+ P(A) =1.
Proof: Since AU A" = § and the sets A and A" are disjoint,
1 = P(S) = P(AU A') = P(A) + P(4'). a1

Example 2.32:| If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or
more cars on any given workday are, respectively, 0.12, 0.19, 0.28, 0.24, 0.10, and
0.07, what is the probability that he will service at least 5 cars on his next day at
work?
Solution: Let E be the event that at least 5 cars are serviced. Now, P(E) = 1 — P(E"),
where E’ is the event that fewer than 5 cars are serviced. Since

P(E")=0.1240.19 = 0.31,
it follows from Thecrem 2.9 that

P(E)=1-10.31=0.69. o |

26
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Example 2.33:| Suppose the manufacturer’s specifications for the length of a certain type of com-
puter cable are 2000 + 10 millimeters. In this industry, it is known that small cable
is just as likely to be defective (not meeting specifications) as large cable. That is,
the probability of randomly producing a cable with length exceeding 2010 millime-
ters is equal to the probability of producing a cable with length smaller than 1990
millimeters. The probability that the production procedure meets specifications is

known to be 0.99.
(a) What is the probability that a cable selected randomly is too large?

(b} What is the probability that a randomly selected cable is larger than 1990

millimeters?
Solution: Let M be the event that a cable meets specifications. Let § and L be the events
that the cable is too small and too large, respectively. Then

(a) P(M)=0.99 and P(5) = P(L) = (1—0.99)/2 = 0.005.
(b) Denoting by X the length of a randomly selected cable, we have

P(1990 < X < 2010) = P(M) = 0.99.
Since P(X = 2010) = P(L) = 0.005,
P(X = 1990) = P(M) + P(L) = 0.995.
This also can be solved by using Theorem 2.9:
P(X =1990) + P(X =< 1990) = 1.

Thus, P(X > 1990) =1 — P(S) = 1 — 0.005 = 0.995.

27
Definition 2.10: | The conditional probability of B, given A, denoted hy P(B|A), is defined hy
P(B|A) = 7‘0(};4(2)81 provided  P(A) > 0.
Table 2.1: Categorization of the Adults in a Small Town
Employed Unemployed Total
Male 460 40 500
Female 140 260 400
Total 600 300 900
EnM EnM)/n(S P(EnNnM
pauip) < ENM) _ n(E0M)/n(S) _ PENM)
n(E) n(E)/n(S) P(E)
600 2 460 23
P(E)= — == d PIENM)=—=—.
Sis s )= %0~
460 23
P(M|E) = — = —.
() 600 30
28
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Example 2.34:| The probability that a regularly scheduled flight departs on time is P(D) = 0.83:
the probability that it arrives on time 1s P(A) = 0.82; and the probability that it
departs and arrives on time is P(D 1 A) = (0.78. Find the probability that a plane

(a) arrives on time, given that it departed on time, and (b) departed on time, given
that it has arrived on time.
Solution: Using Definition 2.10, we have the following.

(a) The probability that a plane arrives on time, given that it departed on time,

is
_P(DnA) 078
P(A|D) = —PD) 08 0.94.
(b) The probability that a plane departed on time, given that it has arrived on
time, is
) P(DnA4) 078 _
e B o B BB e et A

29

Example 2.35:) The concept of conditional probability has countless uses in both industrial and
biomedical applications. Consider an industrial process in the textile industry in
which strips of a particular type of cloth are being produced. These strips can be
defective in two ways, length and nature of texture. For the case of the latter, the
process of identification is very complicated. It 1s known from historical information
on the process that 10% of strips fail the length test, 5% fail the texture test, and
only 0.8% fail both tests. If a strip i1s selected randomly from the process and a
quick measurement identifies it as failing the length test, what is the probability
that it is texture defective?

Solution: Consider the events

L: length defective, T texture defective.
Given that the strip is length defective, the probability that this strip is texture
defective is given by
P(T'nL) 0.008

P(T|L) = —P@ =01 =0

30
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Definition 2.11: | Two events A and B are independent if and only if
P(B|A) = P(B) or P(A|B)=P(A),

assuming the existences of the conditional probabilities. Otherwise, A and B are

dependent.

Theorem 2.10: [If in an experiment the events 4 and B can both occur, then

P(ANDB) = P(A)P(B|A), provided P(A) > 0.

P(AN B) = P(Bn A) = P(B)P(A|B).

Example 2.3 6:l Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If
2 fuses are selected at random and removed from the box in suceession without
replacing the first, what is the probability that hoth fuses are defective?

Solution: We shall let A be the event that the first fuse is defective and B the event that the
second fuse is defective; then we interpret A M B as the event that A occurs and
then B oceurs after A has occurred. The probability of first removing a defective
fuse is 1/4; then the probability of removing a second defective fuse from the
remaining 4 is 4/19. Hence,

= (2) () - ;

¥

31

Omne bag contains 4 white balls and 3 black balls, and a second bag contains 3 white
balls and 5 black balls. One ball is drawn from the first bag and placed unseen in
the second bag. What is the probability that a ball now drawn from the second
bag is black?

Solution: Let By, By, and W represent, respectively, the drawing of a black ball from bag 1,
a black ball from bag 2, and a white ball from bag 1. We are interested in the union
of the mutually exclusive events By N Bz and Wi N Ba. The various possibilities
and their probabilities are illustrated in Figure 2.8. Now

Example 2.37:

P[{Bl n Bg} or (Win Bg)] — P(B] n Bg) + P(L‘Vl n Bz)
= P(B)P(By|By) + P(Wy)P(By|Wy)

-BH-00-3 .

P(B; " B,)=(3/7)(6/9)

B
Bag 2 o
3W, 68 w
5 a0 P(B: W) =(@7)39)
Bag 1 7
4W. 3B
" B PW; (B =(47)59)
Bag 2 69
4W. 5B
49
w

P(W, W) =(4/7)(4/3)

Figure 2.8: Tree diagram for Example 2.37.

32
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Theorem 2.11:

Two cvents A and B are independent if and only if
P(ANn B) = P(A)P(B).

Therefore, to obtain the probability that two independent events will both occur,
we simnply find the product of their individual probabilities.

Example 2.38:

A small town has one fire engine and one ambulance available for emergencies. The
probability that the fire engine is available when needed 15 0.98, and the probability
that the ambulance i1s available when called 1s 0.92. In the event of an mjury
resulting from a burning building, find the probability that both the ambulance
and the fire engine will be available, assuming they operate independently.

Solution: Let A and B represent the respective events that the fire engine and the ambulance

Yy

are available. Then

P(ANB) = P(A)P(B) = (0.98)(0.92) = 0.9016. A

33

Example 2.39:] An electrical system consists of four components as illustrated in Figure 2.9. The

system works if components A and B work and either of the components C or D
works. The reliability (probability of working) of each component is also shown
in Figure 2.9. Find the probability that (a) the entire system works and (b) the
component C' does not work, given that the entire system works. Assume that the
four components work independently.

Solution: In this configuration of the system, A, B, and the subsystem ¢’ and D constitute

a serial eircuit system, whereas the subsystem C' and D itself is a parallel circuit
system.
(a) Clearly the probability that the entire system works can be caleulated as
PIANB N (CUD)| = P(A)P(B)P(C U D) = P(A)P(B)[1 — P(C' N D")]
= P(A)P(B)[1 - P(C)P(D")]
= (0.9)(0.9)[1 — (1 - 0.8)(1 — 0.8)] = 0.7776.
The equalities above hold because of the independence among the four com-
ponents.

(b) To calculate the conditional probability in this case, notice that

P(the system works but C' does not work)
P(the system works)

_ P(AnBnC'nD) 3 (0.9)(0.9)(1 — 0.8)(0.8) — 01667

P=

P(the system works) 0.7776 1
[
pilpmiiny
o 08
Figure 2.9: \TI

34
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Theorem 2.12: |If, in an experiment, the events Ay, Az, ..., Ax can oceur, then

P(AinAsn---NAg)
= P(A;)P(A2|A;)P(A3|A; N Ag) -+ P(Ag|A N AgN--- N Ag_q).

If the events Ay, Aa, ..., Ay, are independent, then

P(A1NAgn---NAg) = P(A)P(Az) - -- P(A).

Example 2.40:] Three cards are drawn in succession, without replacement, from an ordinary deck
of playing cards. Find the probability that the event A; N Ay M A3 occurs, where
Ay is the event that the first card is a red ace, A, is the event that the second card
is a 10 or a jack, and Ajg is the event that the third card is greater than 3 but less
than 7.
Solution: First we define the events

Ajy: the first card is a red ace,

Aj: the second card is a 10 or a jack,

35

Ajg: the third card is greater than 3 but less than 7.

Now

| =0

2 12
P(Al) = —2_. P{Ag|z’—l1) = P{A3|A1 m Ag) == E

[=a}
—

and hence, by Theorem 2.12,

P(A; N Ay N Ag) = P(A1)P(A3|A1)P(As|Ay N Ag)

{3 8 12y 8
\52/\51/\50/ 5525 1

The property of independence stated in Theorem 2.11 can be extended to deal
with more than two events. Consider, for example, the case of three events A, B,
and C. Tt is not sufficient to only have that P(AN BN ) = P(A)P(B)P(C) as a
definition of independence among the three. Suppose A = B and C' = ¢, the null
set. Although ANBNC = ¢, which results in P(ANBNC) = 0= P(A)P(B)P(C),

events A and B are not independent. Hence, we have the following definition.

Definition 2.12: | A collection of events A = {A;,...,A4,} are mutually independent if for any
subset of A, A;,..., A;,, for k < n, we have

P(Ay N---N Ay ) = P(Ay) - P(As,).

36
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Bayves’ Rule

P(A) = P[(EN A)U(E'NA)] = P(EN A) + P(E'N 4)
= P(E)P(A|E) + P(E')P(A|E").

Figure 2.12: Venn diagram for the events A, F, and E'.

37
Example
Goo 2 36 3
PE)= e P(A|E) T
o A w12 1
PE) =3, PAE)=gm=2
E PAIE=350 A
= P(E)P(AIE)
Dy
P(E)P(AI
E PAE) =125 A’ TEITAIED
Figure 2.13: Tree diagram for the data on page 63, using additional information
on page 72.
the probability P(E")P(A|E'"), it follows that
2 3 1 1 4
- (1) (%) () (E)-%
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Theorem 2.13: |If the events By, Bs. ..., By constitute a partition of the sample space .S such that
P(B;)#0fori=1,2,....k, then for any event A of S,

k k
P(A)=Y"P(B;nA) =" P(B,)P(A|B,).

=1 i=1

B,

B, Bs

B,

Figure 2.14: Partitioning the sample space S.

4

39

Proof: Consider the Venn diagram of Figure 2.14. The event A is seen to be the union of
the mutually exclusive events

BinA, BanA, ..., BrnA;
that is,
A=BiNA)U(BznA)U---U(BernA).
Using Corollary 2.2 of Theorem 2.7 and Theorem 2.10, we have
P(A)=P[(BinA)U(B:nA)uU---U(BrnA)
=PBiNA)+ P(B:nA)+---+ P(Brn A)
ke

=YY" P(B,n 4)

i=1

k
=Y P(B:)P(A|B;).

i=1

40
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Example 2.41:|In a certain assembly plant, three machines, B, B,, and B,, make 30%, 45%, and

Solution:

25%, respectively, of the products. It is known from past experience that 2%, 3%,
and 2% of the products made by each machine, respectively, are defective. Now,
suppose that a finished produet is randomly selected. What is the probability that
it is defective?
Consider the following events:

A: the product is defective,
B,: the product is made by machine By,
B;: the product is made by machine By,
Bs: the product is made by machine Bs.

Applying the rule of elimination, we can write
P(A) = P(B1)P(A|B:) + P(B2)P(A|B:) + P(Bs) P(A|Bs).

Referring to the tree diagram of Figure 2.15, we find that the three branches give
the probabilities

P(B1)P(A|By) = (0.3)(0.02) = 0.006,
P(B2)P(A|Bz) = (0.45)(0.03) = 0.0135,
P(B3)P(A|Bs) = (0.25)(0.02) = 0.005,

and hence

F(A) = 0.006 + 0.0135 + 0.005 = 0.0245. A

41

By P(A|B,)=002A
&

o
#
N

&
P(B,) =045 P(A | B»)=003 A
B

=
G

>
“a

A
%
Bs P(A|B3)=002

Figure 2.15: Tree diagram for Example 2.41.
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Theorem 2.14: | (Bayes’ Rule) If the events By, By, ..., By constitute a partition of the sample
space S such that P(B;) # 0 for i = 1,2,...,k, then for any event A in S such
that P(A) #0,
P(B.nA) _ _P(BIP(AIB,)
E :

P(Br|4) = forr=1,2,...,k

T P(B.NA) ¥ P(B)PAR,)
i=l1 =1

Proof: By the definition of conditional probability,
P(B,nA)
P4
and then using Theorem 2.13 in the denominator, we have

P(B,nA) _ P(B)P(AB.)
- - ;

P(B4) =

P(B,|4) = ;
3 P(Bin4) ¥ P(B:))P(A|B;)
=1 =]

which completes the proof. M ]

Example 2. 12:‘ With reference to Example 2.41, if a product was chosen randomly and found to
be defective, what is the probability that it was made by machine B5?
Solution: Using Bayes' rule to write
P(B3)P(A|Ba)
By)P[A|B,) + P(B:2)P(A|B:) + P(B3)P(A|Bz)’

P(Byl4) = 5,

and then substituting the probabilities calculated in Example 2.41, we have

0.005 0.005 10
P(Bs|A) = - _ 8
(Bal4) = 5006 - 0.0135 +0.005 ~ 00285~ 10

In view of the fact that a defective product was selected, this result suggests that
it probably was not made by machine Bj. o |

43

Example 2.43:/ A manufacturing firm employs three analytical plans for the design and devel-
opment of a particular product. For cost reasons, all three are used at varying
times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products,
respectively. The defect rate is different for the three procedures as follows:

P(D|P,) =001,  P(D|F,) =003,  P(D|Py) =002,

where P(D|F;) is the probability of a defective product, given plan j. If a random
product was ohserved and found to be defective, which plan was most likely used
and thus responsible?

Solution: From the statement of the problem

P(P) =030, P(P;)=020, and P(F;)=0.50,

we must find P(P;|D) for j = 1,2, 3. Bayes’ rule (Theorem 2.14) shows

P(P\)P(D|P,)
P(P,|D) =
(AID) P(P)P(D|P\) + P(P:)P(D|P:) + P(P:)P(D| P3)
_ (0.30)(0.01) -
~ (0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02) _ 0.010
Similarly,
_{0.03)(020) . _ (002)(050) _ o
P(P|D) = =5 o— = 0316 and P(Py|D) = =0 = 0.5%.

The conditional probability of a defect given plan 3 is the largest of the three; thus
a defective for a random product is most likely the result of the use of plan 3. _

Using Bayes' rule, a statistical methodology called the Bayesian approach has
attracted a lot of attention in applications. An introduction to the Bayesian method
will be discussed in Chapter 18.

44
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Definition 3.1: | A random variable is a function that associates a real number with each element
in the sample space.

Example 3.1:| Two balls are drawn in succession without replacement from an urn containing 4
red balls and 3 black balls. The possible outcomes and the values y of the random
variable Y, where ¥ is the number of red balls, are

Sample Space ¥y

ER 2
RB 1
BR 1
BB 0 1

Example :5.2:‘ A stockroom clerk returns three safety helmets at random to three steel mill em-
ployees who had previously checked them. If Smith, Jones, and Brown, in that
order, receive one of the three hats, list the sample points for the possible orders
of returning the helmets, and find the value m of the random variable M that
represents the number of correct matches.

Solution: If S, J, and B stand for Smith’s, Jones’s, and Brown’s helmets, respectively, then
the possible arrangements in which the helmets may be returned and the number
of correct matches are

Sample Space m
SJB
SBJ
BIS
JSB
JBS
BSJ

(= =R ]

Example 3.3:| Consider the simple condition in which components are arriving from the produc-
tion line and they are stipulated to be defective or not defective. Define the random
variable X by

1, if the component is defective,
0, if the component is not defective.

Example 3. l:‘Statisticians use sampling plans to either accept or reject batches or lots of
material. Suppose one of these sampling plans involves sampling independently 10
items from a lot of 100 items in which 12 are defective.

Let X be the random variable defined as the number of items found defec-
tive in the sample of 10. In this case, the random variable takes on the values
051,28 005 9, 10. A

Suppose a sampling plan involves sampling items from a process until a defective
is observed. The evaluation of the process will depend on how many consecutive
items are observed. In that regard, let X be a random variable defined by the
number of items observed before a defective is found. With N a nondefective and
D a defective, sample spaces are S = {D} given X =1, S = {ND} given X =2,
S ={NND} given X = 3, and so on. o |

Example 3.5:
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Example f'_.iS:| Interest centers around the proportion of people who respond to a certain mail
order solicitation. Let X be that proportion. X is a random variable that takes
on all values x for which 0 < = < 1. . |

Definition 3.2: | If a sample space contains a finite number of possibilities or an unending sequence

with as many elements as there are whole numbers, it is called a discrete sample
space.

Definition 3.3: | If a sample space contains an infinite number of possibilities equal to the number
of points on a line segment, it is called a continuous sample space.

Definition 3.4:

Discrete Probability Distributions

m |0 1 3
PM=m)|1 1 1

The set of ordered pairs (x, f(2)) is a probability function, probability mass
function, or probability distribution of the discrete random variable X if, for

each possible outcome z,
1. f(z) >0,
2 ¥ flz)=1
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Example 3.8:| A shipment of 20 similar laptop computers to a retail outlet contains 3 that are
defective. If a school makes a random purchase of 2 of these computers, find the
probability distribution for the number of defectives.

Solution: Let X be a random variable whose values = are the possible numbers of defective
computers purchased by the school. Then x can only take the numbers 0, 1, and

2. Now
3 (U 68 3y (17 51
fl0)=P(X =0)= (D(Q(D;) =5 FO=FE=1)= _(1()2&)1) s
2/ 2
3)(17) 3
f(?):P(X:Q)fi(2 e
() 1
Thus, the probability distribution of X is
r |0 1 2
@) | % %

Example 3.9:|If a car agency sells 50% of its inventory of a certain foreign car equipped with side
airbags, find a formula for the probability distribution of the number of cars with
side airbags among the next 4 cars sold by the agency.

Solution: Since the probability of selling an automobile with side airbags is 0.5. the 2* = 16
points in the sample space are equally likely to oceur. Therefore, the denominator
for all probabilities, and also for our function, is 16. To obtain the number of
ways of selling 3 cars with side airbags, we need to consider the number of ways
of partitioning 4 outcomes into two cells, with 3 cars with side airbags assigned
to one cell and the model without side airbags assigned to the other. This can be

done in (g): 4 ways. In general, the event of selling  models with side airbags

and 4 — x models without side airbags can occur in (i) ways, where z can be 0, 1,

2, 3, or 4. Thus, the probability distribution f(z) = P(X =z) is

y 174
flz)= E(m)’ forz=0,1,2,3,4.

o |

There are many problems where we may wish to compute the probability that
the observed value of a random variable X will be less than or equal to some real
number z. Writing F(z) = P(X < 2) for every real number 2, we define F(2z) to
be the cumulative distribution function of the random variable X.
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Definition 3.5: | The cumulative distribution function F(z) of a discrete random variable X
with probability distribution f(z) is

F(z)=P(X <z)=)_ f(t), for —0<z<oo

t<z

For the random variable M, the number of correct matches in Example 3.2, we

have i E
F(2)=P(M <2) = f(0) + f(1) 3 + S
The cumulative distribution function of M is
0, form <0,
1
il &
Fim)={¥ forOi m<1,
g forl<m<3,
1, form>3.
4
9
Example 3.1 H:‘ Find the cumulative distribution function of the random variable X in Example
3.9. Using F(z), verify that f(2) = 3/8.
Solution: Direct calculations of the probability distribution of Example 3.9 give f(0)=1/16,
f(1) =1/4, f(2)=3/8, f(3)=1/4, and f(4)=1/16. Therefore,
1 1 /4
e o i) o 9 9,
F(0)= f(0) = 6 fl(z) T (T) forz=0,1,2,3.4
5
F()=f(0)+ f(1) = b
il
FQ =10+ ) +f2) =1
. 15
FE =10+ +f2)+f03) =15
FA) =)+ f0)+f2Q)+/3)+f4) =1
Hence,
0, forz<0,
ﬁ for0 <z <1,
Flz)= E for 1<z <2,
G for2<az<3,
L5 for3<x<y,
1 for = > 4.
Now
_ i R &
f(2):F(2)—F{1)_E7E_S. P
10
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616 ) =
| [
5161 : 5/16
I L
4161 ? : ? 4/16
a6l i i i ansh
216 | ! } 2116
| | |
I I I L
116 T } : } T 116 ’7
Il I 1 Il L x X
0 1 2 3 4 ] 1 2 3 4
Figure 3.1: Probabhility mass function plot. Figure 3.2: Probability histogram.
Fix)
1 .
34
1”2
.
14
0 1 2 3 PR

Figure 3.3: Discrete cumulative distribution funetion.

11

Continuous Probability Distributions

(b) (c) (d)
Figure 3.4: Typical density functions.

b
Pla<X <b)= / f(z) da.
fx) ...

a b

Figure 3.5: Pla < X < b).

12
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Definition 3.6: | The function f(z) is a probability density function (pdf) for the continuous
random variable X, defined over the set of real numbers, if

L. f(x) =0, forall x € R.
2. [Z f(z)dz=1.

3. Pla< X <b)= [ f(z) do.

Example 3.1 I:| Suppose that the error in the reaction temperature, in °C, for a controlled labora-
tory experiment is a continuous random variable X having the probability density
function

flz) = {L -l<z<?2,

3
0, elsewhere.

(a) Verify that f(z) is a density function.
(b) Find P(0 < X <1).
Solution: We use Definition 3.6.

(a) Obviously, f(z) = 0. To verify condition 2 in Definition 3.6, we have
e 2 2 z3 g8 1
z) dz = Tdr="P =4 _-=1.
[ r@a= [ Sa=Gr-g4g

(b) Using formula 3 in Definition 3.6, we obtain

1

L2 31
v P(0<Xg1):fidm:i
0 3 90

13

Definition 3.7: | The cumulative distribution function F(z) of a continuous random variable
X with density function f(zx) is

F(-.?:):P(ng)z[m f(t) dt, for —ooc <z < co.

As an immediate eonsequence of Definition 3.7, one ean write the two results
Pla< X <b)=F(b)— F(a) and f(z) = d{;{r).
»

if the derivative exists.

ixample 3.1 2:‘ For the density function of Example 3.11, find F(z), and use it to evaluate
P0O< X <1).
Solution: For —1 < x < 2,

F(m)=f_;f(r) dt:/j%dt: t; :=“’J;1.
Therefore,
0, x < —1,
Flz)={2Z4H _1<z2<2
i T >2

The cumulative distribution funetion F(z) is expressed in Figure 3.6. Now

2 1 1

= - R

P0< X <1)=F(1)-F(0) 5 =95
which agrees with the result obtained by using the density funetion in Example
3.11. | |

14
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Example 3.

S Zp<y< o
- 8k B — ?
f(y)—{o!

elsewhere.
the DOE’s preliminary estimate b.
Solution: For 2b/5 < y < 2b,

o5 5t ¥ 51
Fly) = Sl RSLL| IR I
W) /b YT ®»

2b/5 o 8b

1
i

13:] The Department of Energy (DOE) puts projects out on bid and generally estimates
what a reasonable bid should be. Call the estimate b. The DOE has determined
that the density funetion of the winning (low) bid is

Find F(y) and use it to determine the probability that the winning bid is less than

15

(%)
1.0 —
!
i'/
/
/
05l /
! ~ B | |

=] 0 1

Figure 3.6: Continuous cumulative distribution function
Thus,

0, y < 2b,
Fly)={% -1, 2b<y<2,
i y = 2b.
estimate b, we have

To determine the probability that the winning bid is less than the preliminary bid

P(Y <b)=F(b)

A
371

a
=

16
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Definition 3.8: | The function f(x.y) is a joint probability distribution or probability mass

function of the discrete random variables X and Y if

1. f(z,y) =0 for all (z,y),
2. 33 fz.u)=1,
]

3 P(X ==Y =g)=f(z:n)

For any region A in the ry plane, P[(X,Y) € A

:Z;ﬂr-y)-

Example 3. l—l:{ Two ballpoint pens are selected at random from a box that contains 3 blue pens,

2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is
the number of red pens selected, find
(a) the joint probability function f(r,y),
(b) P|(X.Y) € A], where A is the region {(z,y)|r +v < 1}.
Solution: The possible pairs of values (z,y) are (0,0), (0,1), (1,0), (1,1), (0,2), and (2,0).
(a) Now, f(0,1), for example, represents the probability that a red and a green
pens are selected. The total number of equally likely ways of selecting any 2
pens from the 8 is (g] = 28. The number of ways of selecting 1 red from 2
red pens and 1 green from 3 green pens is ('f) (:l‘) = 6. Hence, f(0,1) = 6/28
= 3/14. Similar calculations yield the probabilities for the other cases, which
are presented in Table 3.1. Note that the probabilities sum to 1. In Chapter

(X%
17
5, it will become clear that the joint probability distribution of Table 3.1 can
be represented by the formula
3 2 3
](:_y) = (:] (y) (uzfxfy) 4
(2)
forr=0,1,2,94=0,1,2;and 0<x+y < 2.
(b) The probability that (X,Y) fall in the region A is
P(X,Y) € Al = P(X +¥ <1) = f(0,0) + £(0,1) + £(1,0)
3 3 9 9
28 14 28 1 A
Table 3.1: Joint Probability Distribution for Example 3.14
T Row
f(z.v) 0 1 2 | Totals
0 3 9 3 15
B W B b
y 1 T ow 0| %
2 = 0 0| %
Column Totals | & £ 2 1
When X and Y are continuous random variables, the joint density function
f(z,y) is a surface lying above the ry plane, and P[(X,Y) € A], where A is any
region in the ry plane, is equal to the volume of the right cylinder bounded by the
base A and the surface.
YA

18
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Definition 3.9:

The function f(r,y) is a joint density function of the continuous random
variables X and Y if

1. f(x,y) = 0, for all (z,y),

2. [* [ f(z.y)dzdy =1,

3. P[(X.Y)€e A]l = [ [, f(z,y) dr dy. for any region A in the xy plane.

Example 3.15:| A privately owned business operates both a drive-in facility and a walk-in facility.

On a randomly selected day, let X and Y, respectively, be the proportions of the

time that the drive-in and the walk-in facilities are in use, and suppose that the
joint density function of these random variables is

Y (2r+3y), 0<z<1,0<y<l,
TY)=1°
5 0, elsewhere.

(a) Verify condition 2 of Definition 3.9.

(b) Find P[(X,Y) € A], where A = {(r,y) |0<z <

.
o=
A

e
A
e
—

19

Solution: (a) The integration of f(x,y) over the whole region is

o0 oo 1 19
/ ] flz,y) dz dy = / / —(2r + 3y) dr dy
i S S Jo Jo

2

1 02 6 z=1
[ ()|
Jo B ] =0
1ra 6 i -
. 5B
1 3y
To*?)dy
[ ]

20
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Given the joint probability distribution f(x,y) of the discrete random variables
X and Y, the probability distribution g(x) of X alone is obtained by summing
f(x,y) over the values of Y. Similarly, the probability distribution h(y) of ¥ alone
is obtained by summing f(z,y) over the values of X. We define g(zx) and k(y) to
be the marginal distributions of X and Y, respectively. When X and Y are
continuous random variables, summations are replaced by integrals. We can now
make the following general definition.

Definition 3.10: | The marginal distributions of X alone and of Y alone are

9(x) =) f(z.y) and h(y)=) f(z.v)
v x
for the discrete case, and

o@) = [ s dy and h)= [ @)@

for the continuous case.

The term marginal is used here because, in the discrete case, the values of g(r)
and h(y) are just the marginal totals of the respective columns and rows when the
values of f(z,y) are displayed in a rectangular table.

21
Example 3.16:| Show that the column and row totals of Table 3.1 give the marginal distribution
of X alone and of Y alone.
Solution: For the random variable X, we see that
3 3 1 5
- ) . O R SR
g(0) = f(0,0) + f(0,1) + £(0,2) wtatsE=1
9 3 15
= - A W2)==+— ==
9(1) = £(1,0) + F(1,1) + f(1.9) = 55 + Tx +0 =2
and
9(2) = F2.0) + F2.1) + F(2.2) = = +040= =
2) = f(2, 2, 22) =5 =55
which are just the column totals of Table 3.1. In a similar manner we could show
that the values of k(y) are given by the row totals. In tabular form, these marginal
distributions may be written as follows:
r |0 1 2 ¥y |9 1 2
P EEECIEEE 1
Yy
22
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Example 3.1 7:| Find g(z) and h(y) for the joint density function of Example 3.15.

Solution: By definition,

2

e . iy 62\|"' 4z 43
9(z) :j J(z.y) dy:/ (2 +3y) dy = (— +ﬁ)| =
i o B 5 y=0
for 0 < x <1, and g(x) = 0 elsewhere. Similarly,
< e 2(1 +3y)
h(g):/ flz.y) d::j E['lr*l}y)d:r:—( = v
- 0
for 0 < y < 1, and h(y) = 0 elsewhere. . |
The fact that the marginal distributions g(z) and h(y) are indeed the proba-
bility distributions of the individual variables X and Y alone can be verified by
showing that the conditions of Definition 3.4 or Definition 3.6 are satisfied. For
example, in the continuous case

[iﬂlr)drili[if(:.y)dydrzl.

Pla<X <b)=Pla<X <b-o00<Y <)

=ff f(z,y) riyd:r:fg(:r) dr.

In Section 3.1, we stated that the value r of the random variable X represents
an event that is a subset of the sample space. If we use the definition of conditional
probability as stated in Chapter 2,
_PANB)
- P(A)

and

P(B|A) . provided P(A) >0,

23

Definition 3.11: |Let X and Y be two random variables, discrete or continuous. The conditional

where A and B are now the events defined by X = r and Y = y, respectively, then

PX=zY=y) f(z.,y)

Y =9g| X =2)= P(X =1) R TEY)

. provided g(z) > 0,

where X and Y are discrete random variables.

It is not difficult to show that the function f(z,y)/g(x), which is strictly a func-
tion of y with x fixed, satisfies all the conditions of a probability distribution. This
is also true when f(r,y) and g(r) are the joint density and marginal distribution,
respectively, of continuous random variables. As a result, it is extremely important
that we make use of the special type of distribution of the form f(x,¥)/g(z) in
order to be able to effectively compute conditional probabilities. This type of dis-
tribution is called a conditional probability distribution; the formal definition
follows.

distribution of the random variable Y given that X = z is

_ f(z.v)
f(ylr) = @)

Similarly, the conditional distribution of X given that Y = y is

f(z,y)
hiy)

. provided g(r) > 0.

flzly) = , provided h(y) > 0.

24
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If we wish to find the probability that the discrete random variable X falls between
a and b when it is known that the discrete variable ¥ = y, we evaluate

Pa<X<b|Y=y)= 3 f(=lv),

a<z<b

where the summation extends over all values of X' between a and . When X and
Y are continuous, we evaluate

b
Pla<X<b|Y=y)= / 1(zly) dz.

Example 3.18:| Referring to Example 3.14, find the conditional distribution of X, given that Y =1,
and use it to determine P(X =0 |Y = 1).
Solution: We need to find f{r|y), where y = 1. First, we find that

= 3.8 3
h[l):gj(r,l):ﬁ+ﬁ+0:F.
Now
f(z]1) = ]i(x_(ri]” = (-3) f(z.1), £=0,1,2.

o= (B w0 =) ) -§ rom= G 00- ) 2)-
) = (é)f('l.lz - (3) © =0,

and the conditional distribution of X, given that ¥ = 1, is
T 0 1 2
fizi) |3 3 0

Finally,
P(X=0|¥=1)=f(01) = 5.

Yo Therefore, if it is known that 1 of the 2 pen refills selected is red, we have a
probability equal to 1/2 that the other refill is not. blue. 1
25
Example 3.19:] The joint density for the random variables (X, Y), where X is the unit temperature
change and Y is the proportion of spectrum shift that a certain atomic particle
roduces, is
FERrEe Sy < [107 0<z<u<t,
zT,Y) =
Y 0, elsewhere.
(a) Find the marginal densities g(z), h(y), and the conditional density f(y|z).
(b) Find the probability that the spectrum shifts more than half of the total
observations, given that the temperature is increased by 0.25 unit.
Solution: (a) By definition,
oo 1 B
9(z) = f fz.y) dy = _[ 10xy” dy
-0 x
y=1
= E_rus :Er(l—:ﬂ.ﬂ(r(l.
3 y=r 3
e v =
h(v) :/ f(z,y) dr :] 10ry? dr = 52%%|]_) =5*, D<y<1.
o ]
Now
f(z,v) 10xy* 3y?
) = — = - = , 0<z<y<l.
fsiz) gx)  Br(1-1%) 1-2° B
(b) Therefore,
1 p : kTS 8
PlY>-]|X=025])= =0.25) dy = ——dy=-.
( = u) [ﬂ]ty\: 5) dy _[31,2170_253 Y= 5a
Example .‘i.fl]:l Given the joint density function
ﬂ‘—”fﬂ. D<r<2 0<y<l,
J(z,y) = :
0, elsewhere,
Y

26
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Example 3.20:| Given the joint density function

2
fzy) = L‘:’—’ 0<r<?2 0<y<]l1,
o 0, elsewhere,

Y=

wl—

)

13—

find g(z), h(y), f(z|y), and evaluate P(} < X <
Solution: By definition of the marginal density. for 0 < r < 2,

- Yx(1+3y?)
y!r]f/ f(2.y) dy:j ool i oy
J—oo 0 4

y=l1

and for0<y <1,

e 2 z(1 + 3v%)
h(y) = / f(r.yldr:] udr
Jeo b 4
(2, =\ [T 1432
=lg+—5" = @

2
Therefore, using the conditional density definition, for 0 < z < 2,

z=0

flr,y) =z(1+3
h(y) (1+3

flxly) =

and

27

Statistical Independence

If f(x|y) does not depend on y, as is the case for Example 3.20, then f(z|y) = g(x)
and f(x,y) = g(x)k(y). The proof follows by substituting

f(z.y) = f(z|v)h(y)

into the marginal distribution of X. That is,
0 ~
9(x) :[ f(z,y)dy= [ f(x|u)h(y) dy.
—o0 ' —co
If f(x|y) does not depend on y, we may write

g(z) = f(zly) / h(y) dy.
J =20

f h{y) dy = 1,

since h(y) is the probability density function of Y. Therefore,

Now

g(r) = f(z|ly) and then f(r,y)= g(x)h(y).

28
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Definition 3.12: |Let X and ¥ be two random variables, discrete or continuous, with joint proba-
bility distribution f(z,y) and marginal distributions g(z) and h(y), respectively.
The random variables X and Y are said to be statistically independent if and
only if

I(z,y) = g(x)h(y)

for all (z,y) within their range.

Example 3.21 :I Show that the random variables of Example 3.14 are not statistically independent.
Proof: Let us consider the point (0,1). From Table 3.1 we find the three probabilities
£(0,1), g(0), and h(1) to be

3
f0,1) = o
: I T (-
WO =3 IO =+t m =T
y=0
2 g 8 3
h(l) = N=—+—+0=—-.
& Z;,ﬂr R TRET 7
Clearly,
1(0,1) # g(0)h(1),
and therefore X and Y are not statistically independent. |

All the preceding definitions concerning two random variables can be general-
ized to the case of n random variables. Let f(x;,x,,...,x,) be the joint probability
function of the random variables X, X,...,. X . The marginal distribution of X,
for example, is

g(r) = ZZ J(x1, %2, - -1 Z0)

Y4
29
for the discrete case, and
a0 ac
g(m) = / / f(z1,72,...,Ts) dxz dz3---dz,
—o0  J-ao

for the continuous case. We can now obtain joint marginal distributions such
as g(x,,r2), where

b IR T £ T TORN T) (discrete case),
g(zy,x2) = En

o o f(zrzas ey Tyn) drs dry---dr, (continuous case).
We could consider numerous conditional distributions. For example, the joint con-
ditional distribution of X1, X2, and X3, given that X4 = x4, X5 = 75,....,. K =
T, is written

f(x1,x2,23 | 24,75
where g(z4,75,...,
X Xwiioiiad Xa:

A generalization of Definition 3.12 leads to the following definition for the mu-
tual statistical independence of the variables X, X3,...,. Xn-
Y.

30
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Definition 3.13: |Let X1,X2,...,Xn be n random variables, discrete or continuous, with
joint probability distribution f(x,xa,..., r,) and marginal distribution
Ni(z1), f2(x2), ..., fa(zs), respectively. The random variables X, X5,..., X, are
said to be mutually statistically independent if and only if

¥\

f(=®, 23,4004 Tn) = fi(z1) fa(x2) - - - fn(Za)
for all (xy,x2,...,2,) within their range.
Example 3.22:' Suppose that the shelf life, in years, of a certain perishable food product packaged

in cardboard containers is a random variable whose probability density function is

given by
e =, z>0,
z) =
/() {O, elsewhere.

Let X, X;, and X3 represent the shelf lives for three of these containers selected
independently and find P(X, <2,1< X3 <3,X5 >2).

Solution: Since the containers were selected independently, we can assume that the random
variables X, X5, and X5 are statistically independent, having the joint probability
density

f(x1.72,73) = f(11)f(22) f(23) = ™" ™™™ = 70 7HTE,

for ¥y > 0, 29 > 0, 3 > 0, and f(z,,x,,23) = 0 elsewhere. Hence

oo 3 o2
P(X;<2,1<X3<3,X3>2)= / / / e TR dry dxg dry
r 1 Jo

=(1-e3?)(e ! —e3)e 2 =10.0372. 1

31
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Mathematical Expectation

Dr. Raed Al athamneh

4.1

Mean of a Random Variable

In Chapter 1, we discussed the sample mean, which is the arithmetic mean of the
data. Now consider the following. If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the values of X are 0, 1, and 2. Suppose
that the experiment yields no heads, one head, and two heads a total of 4, 7, and 5
times, respectively. The average number of heads per toss of the two coins is then

(0)(4) + (1)(7) + (2)(5)
16

= 1.06.

This is an average value of the data and yet it is not a possible outcome of {0, 1,2},
Hence, an average is not necessarily a possible outcome for the experiment. For

instance, a salesman’s average monthly income is not likely to be equal to any of

his monthly paychecks.
Let us now restructure our computation for the average number of heads so as
to have the following equivalent form:

| 7 ,
(0) (E) + (1) (E) +(2) (E) = 1.08.
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Assuming that 1 fair coin was tossed twice, we find that the sample space for

our experiment is
S'={HH, BT, TH,TT}.

Since the 4 sample points are all equally likely, it follows that

P(X =0) = P(TT) = % P(X = 1)= P(TH)- P(HT) = 1)
and
P(X = 2) = P(HH) = i

where a typical element, say TH, indicates that the first toss resulted in a tail
followed by a head on the second toss. Now, these probabilities are just the relative
frequencies for the given events in the long run. Therefore,

o= E(X) = (0) G) +Q) (%) +@) (i) i,

Definition 4.1: | Let X be a random variable with probability distribution f(r). The mean, or

expected value, of X is
p=EX)= Z rf(r)

o

if X is discrete, and

o
p=E(X)= / rf(x) dr
J=x

if X is continuous.

Example 4.1:] A lot containing 7 components is sampled by a quality inspector; the lot contains
I good components and 3 defective components. A sample of 3 is taken by the
inspector. Find the expected value of the number of good components in this
sample.

Solution: Let X represent the number of good components in the sample. The probability
distribution of X is

(DG3.)

f(x) = ’T z=0,1,2,3.
3

Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) =
1/35. Therefore,

—Ex) =0 (L) + 0 () + @ (2BY+ @ (XY=L =17
p=21) =003 35 “Ngs ) "W NG ) =7

Thus, if a sample of size 3 is selected at random over and over again from a lot
of 4 good components and 3 defective components, it will contain, on average, 1.7

. |

good components.
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Example 4.2:1 A salesperson for a medical device company has two appointments on a given day.
At the first appointment, he believes that he has a 70% chance to make the deal,
from which he can earn $1000 commission if successful. On the other hand, he
thinks he only has a 40% chance to make the deal at the second appointment,
from which, if successful, he can make $1500. What is his expected commission
based on his own probability belief? Assume that the appointment results are
independent of each other.

Solution: First, we know that the salesperson, for the two appointments, can have 4 possible
commission totals: $0, $1000, $1500, and $2500. We then need to calculate their
associated probabilities. By independence, we obtain

f(80) = (1 =0.7)(1 —0.4) =0.18, f($2500) = (0.7)(0.4) = 0.28,
F($1000) = (0.7)(1 — 0.4) = 0.42, and f($1500) = (1 —0.7)(0.4) = 0.12,

Therefore, the expected commission for the salesperson is

E(X) = (50)(0.18) + ($1000)(0.42) + ($1500)(0.12) + ($2500)(0.28)

= $1300. . |

Example 4.3:' Let X be the random variable that denotes the life in hours of a certain electronic
device, The probability density function is

{':"J,“‘f‘“. r > 100,
{

), elsewhere.

Find the expected life of this type of device.
Solution: Using Definition 4.1, we have

. = 90,000 90, 000
p=EX)= Fi T dr = dr = 200.
100 T Jwo I

Therefore, we can expect this type of device to last, on average, 200 hours. A
4(X), which depends on X; that
For instance, g(.X') might

Now let us consider a new random variabl
ach value of g(X') is determined by the value of X,

rix - X assumes the value 2, g(.X') assumes the value
g(2). In particular, if X m variable with probability distribution
f(x), for r = =1,0,1,2, and g(X) = X2, then

Plg(X) =0] = P(X =0) = f(0),
Plg(X)=1=P(X ==1)+ P(X =1)= f(=1)+ f(1).
Plg(X)=4]=P(X =2) = f(2).
and so the probability distribution of g(X) may be written
g(x) 0 1 1
Plg(X)=g(@)] | 710)  f=D+f(1) f(2)
By the definition of the expected value of a random variable, we obtain
tgxy = Elg(x)] = 0£(0) + 1[f(=1) + f(D)] + 4£(2)
= (=D2f(=1) + (02 £(0) + ()2 f(1) + (22£(2) = 3 glx) f ().

x
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Theorem 4.1:

Let X be a random variable with probability distribution f(x). The expected
value of the random variable g(X) is

9(X)] = Zm-rl.f(.r')

x

Hex)=FE

if X is discrete, and

o0

Ig(x) = Elg(X)] = [ g(x)f(x) dr

J—co

if X is continuous.

Example 4.4:/ Suppose that the number of cars X that pass through a car wash between 4:00
p.M. and 5:00 p.m. on any sunny Friday has the following probability distribution:
x |4 5 6 7 8 9
PX=2)|% & 1 1 & &
Let g(X') = 2X —1 represent the amount of money, in dollars, paid to the attendant
by the manager. Find the attendant’s expected earnings for this particular time

period.
Solution: By Theorem 4.1, the attendant can expect to receive
0
Elg(X)] = EQX - 1) =Y _(2r - 1)f(x)
z=4

I ORIGRIORAG

Example 4.5:/ Let X be a random variable with density function

-l<r<?

oY i ) 8
f(x) {[}. elsewhere.

Find the expected value of g(X) = 4X + 3.
Solution: By Theorem 4.1. we have

2 (4z + 3)z2 N ,
E(4X +3) = f g dr = - / {-1.:"} + 3.1")) dz =8.
P 21 P

We shall now extend our concept of mathematical expectation to the case of
two random variables X and Y with joint probability distribution f(x,y).

Definition 4.2: | Let X and Y be random variables with joint probability distribution f(z,y). The
mean, or expected value, of the random variable g(X.Y) is

roxy) = Elg(X.Y)] =33 g(a.y)f(x.y)
z oy
if X and Y are discrete, and

o0 o0
He(X,Y) = .f'_'[.f[l.\: Y).] = [ / glr,y) f(x,y) dr dy
=00 J =00

if X and Y are continuous.
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Example 4.6:/ Let X and Y be the random variables with joint probability distribution indicated
in Table 3.1 on page 96. Find the expected value of g(X,Y) = XY. The table is
reprinted here for convenience.

T Row

f(r.y) [0 1 2 | Totals

> 1% 5[ 2

3 3 3

Y 1 1 1u 0 7
2 z 0 0 &
Column Totals | 3 ?2—3 2%‘ |

Solution: By Definition 4.2, we write

2 2
DD ayflay)

r=0y=0
= (0)(0)£(0,0) + (0)(1)£(0,1)
+ (1)(0)f(1.0) + (1)(1) f(1. 1) + (2)(0) f(2,0)
) 3
F(L1) = 7l N

E(XY)

Il

Example 4.7:/ Find E(Y/X) for the density function

M <2 0<y<l,
flr.y) = 4
0, elsewhere.

Solution: We have

, 1 2 Q.2 1 9.3 <
- 3 !
,_-(L,) _ f / YA+35) oy = [ L
A o Jo ! 1] 2 S N |

Note that if g(X.Y) = X in Definition 4.2, we have

Y ¥ af(x,y) =3 zg(x) (discrete case),
E(X)=4 = ¥ d

x
‘_xx f_xx xf(r.y) dy dr = f_xx xg(x) dr (continuous case),

where g(x) is the marginal distribution of X. Therefore, in calculating E(X) over
a two-dimensional space, one may use either the joint probability distribution of
X and Y or the marginal distribution of X. Similarly, we define

S uf(xy) =3 yh(y) (discrete case),
EY)=¢{ v = v )
’_xx J'_xx yf(xr.y) dedy = J‘-_xx yh(y) dy (continuous case),

where h(y) is the marginal distribution of the random variable Y.

10
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4.2

Variance and Covariance of Random Variables

The mean, or expected value, of a random variable X is of special importance in
statistics because it describes where the probability distribution is centered. By
itself, however, the mean does not give an adequate description of the shape of the
distribution. We also need to characterize the variability in the distribution. In
Figure 4.1, we have the histograms of two discrete probability distributions that
have the same mean, g = 2, but differ considerably in variability, or the dispersion
of their observations about the mean.

I
I
I
I
I
I
I
I
:
1

2

N i e e i . s i e s s ]

(@) (b)

Figure 4.1: Distributions with equal means and unequal dispersions.

11

Definition 4.3:

Let X be a random variable with probability distribution f(x) and mean p. The
variance of X is

a? = E|(X - p)?] = Z(,r — 1) f(x), if X is discrete, and

x
o = E[(X - p)? = / (x = p)?f(x) dr, if X is continuous.
S

The positive square root of the variance, o, is called the standard deviation of

Example 4.8:

MISINESS PUrposes on any
company A [Figure 4.1(a)] is

: 1 2 3

fle) |03 04 03

and that for company B [Figure 4.1(h)] is

T 0 1 2 4 1
fx) 02 01 03 03 01

Show that the variance of the probability distribution for company B is greater

Solution:

Ha E(X) = (1)(0.3) + (2)(0.4) + (3)(0.3) 2.(

,
%= (r =27 = (1-2%(0.3) + 2 - 2%(04) + (3-2)*(0.3) = 06
=1

For company B, we have
e = E(X) = (0)(0.2) + (1)(0.1) + (2)(0.3) + (3)(0.3) + (4)(0.1) = 2.0,

i

ad Z.. - 2)f(x)

=0
(0—2)2(0.2) + (1 = 2)%(0.1) + (2 - 2)*(0.3)

+ (3 -

2)2(0.3) + (4 = 2)%(0.1) = 1.6.

12
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calculations, 1s stated in the tollowing theorem.

Theorem 4.2: | The variance of a random variable X is

o2 = E(X

'2) _“'2.

Proof: For the discrete case, we can write

ol = Z(_r - p)zf(.rj = Z(.r2 —2ux + .u.")_f(‘r)

z

- Z ‘:'2.!'(.1'] — 2 Z xf(x) + ,'r2 Z T(z)-

Since 1 = Y f(x) by definition, and Y f(x) = 1 for any discrete probability
distribution, it follows that ‘
02 = Z .J"')f(.r) - ,u") =E(X?%) - ,'12.

=
For the continuous case the proof is step by step the same, with summations
replaced by integrations. A

13

Example 4.9:

Solution:

Example 4.10: The weekly demand f

Let the random variable X represent the number of defective parts for a machine
when irts are sampled from a production line and tested. The following is the
probability distribution of X.
r | 0 1 2 3
f(x) ‘ 0.51 038 010 0.01
m 4.2, calculate o2,
pute

Using The
First, we

= (0)(0.51) + (1)(0.38) + (2)(0.10) + (3)(0.01) = 0.61
Now,
E(X?) = (0)(0.51) + (1)(0.38) + (4)(0.10) + (9)(0.01) = 0.87.
I'herefore,

2

a? = 0.87 - (0.61)* = 0.4979. a1

inking-water product, in thousands of liters, from
ible X having the

a local chain of efficiency stores is a continuous random vari:

g — <r<?
f(:'l:{_“ 1), 1<x<?2,

probability density

0, elsewhere

Find the mean and variance of X.

1= E( \'}—V‘J/ r(r—1) dr = :'
! 3

2 “ 9 17
f:{,\"];ﬂf ré(r — 1) dr = _‘
h [

and

Therefore,

14
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Let X be a random variable with probability distribution f(x). The variance of
the random variable g(X) is

Theorem 4.3:

”;.;(_\’] = E{[g(X) - /':J(,\'J]Q} = Z[!HJ') - f’_rr(.\'llz.”"')

if X is discrete, and
o2ixy = E{[9(X) = pgx))*} = / [9(x) = pgx))2f () dx
J—0oc

if X is continuous.

Proof: Since g(X) is itself a random variable with mean y,(x) as defined in Theorem 4.1,
it follows from Definition 4.3 that

";.:(.\‘) = E{[¢(X) - I"y(.\')l}~

Now, applying Theorem 4.1 again to the random variable [g(X) —j14(x)]? completes
the proof.

15
Example 4.1 1:| Calculate the variance of g(X) = 2X + 3, where X is a random variable with
probability distribution
r |0 1 2 3
@ & % 3
3
pax+3=E@Q2X +3) = (2r+3)f(x) =6.
=0

Now, using Theorem 4.3, we have

03x 43 = B{[(2X + 3) — pi2z43]%} = B[(2X + 3 - 6)?]
3
=EB(4X?-12X+9) =) (42® — 122+ 9)f(z) = 4.

=0

16
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Example 4.12:] Let X be a random variable having the density function given in Example 4.5 on
page 115. Find the variance of the random variable g(X) = 4X + 3.
Solution: In Example 4.5, we found that ji4x4+3 = 8. Now, using Theorem 4.3,

02y 13 = E{[(4X +3) - 8%} = E[(4X - 5)7]

2

2 P .1'2 | = . o 51
= [ (4x = 5)*— dx = = / (162* — 102° + 25z2°) dx = —.
i 3 3 J=q

)

. |

Ifg(X.Y)=(X—pux)(Y —py), where px = E(X) and py = E(Y), Definition
4.2 yields an expected value called the covariance of X and Y. which we denote
by axy or Cov(X.Y).

Definition 4.4: | Let X and Y be random variables with joint probability distribution f(z,y). The
covariance of X and Y is

Txy = E[(X —px)(Y —py)] = D) (2 — px)(y — i) f (2, )
r v
if X and Y are discrete, and

oxy = E[(X = px)(Y — py)] :/ ] (= px )y = py) f(x,y) dr dy

if X and Y are continuous.

17

Theorem 4.4: | The covariance of two random variables X and Y with means piy and j1y-, respec-
tively, is given by

Oxy = E(XY) — pxpiy.

Proof: For the discrete case, we can write

Oxy = Z Z(-r = x)(y — py ) f (. y)

r oy
=" wyf(ry) —nx > ey

—py 3D wf(@y) + pxpy I Y f(@y).
r oy z y

Since

Jix = Z,rf(,r.y}. Jiy = ny(.r.y). and ZZIU.'”) =1
x r oy

y
for any joint discrete distribution, it follows that
Oxy = E(XY) = pxpiy — piypix + pxpty = E(XY) = pxpiy.

For the continuous case, the proof is identical with summations replaced by inte-

grals. . |

18
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Example 4.13:/ Example 3.14 on page 95 describes a situation involving the number of blue refills
X and the number of red refills Y. Two refills for a ballpoint pen are selected at
random from a certain box, and the following is the joint probability distribution:

x
fley) [0 T 2771 h(y)
0 3 I 3 I5
28 28 28 28
Y 1 % % 0 T‘f
2 L o o &
9z) [ % 3| 1
Find the covariance of X and Y.
Solution: From Example 4.6, we see that £(XY) = 3/14. Now
2
b 15 3 3
_ SN 2Ny =Y n(2y=2
Hx = Z_“-t_r.r(-r ) =(0) (”) + (1) (,_)H) +(2) (,_,(\.) =7

and

£ 15 3 1 I
fy = Zﬂ”"‘-’“ =(0) (I) +(1) (:) +(2) (%) =3
y=

Therefore,

e 4 3 1 Y
Oxy = E(XY) — pxpy = 14~ (i) (7)) - " 56

19

Example 4.14:! The fraction X of male runners and the fraction Y of female runners who compete
in marathon races are described by the joint density function

Sry, 0<y<xr<l,
flz,y)= -
0. elsewhere.

Find the covariance of X and Y.
Solution: We first compute the marginal density functions. They are

13, 0<r<l.
glr) = e

0, elsewhere,

and

—y?), 0<y<1,
MH':{[IUH y). 0<y<l1

), elsewhere.

From these marginal density functions, we compute

. | S a 8
px =E(X)= [ 1z dr = — and py = [ 12 (1 — y?) dy = T

Jo 2 Jo 2

From the joint density function given above, we have

1 1 |
E(XY)= / [ 822y dx dy = 5

Jo Jy (

R I 1 8 I
Oxy = E(XY) — uxpy :67(5)(]:‘)=223_

20
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Definition 4.5: |Let X and Y be random variables with covariance oxy and standard deviations
oy and oy, respectively. The correlation coefficient of X and Y is

_ Oxy
Pxy =

OxOy

Example 4.15: Find the correlation coefficient between X and Y in Example 4.13.

Solution: Since
2(X2) = (02 5 g 15 ;. 75l 3 - 27
E(X*) = (0%) ﬁ + (1°) K + (2%) F 7;
& 0 15 9 (3 o 1 1
E(Y?) = (0%) (,—') +(12) (:) +(2) (,—) =z,
28 i 28 [

- P 2 o 2
5 20 3 5 2] 1 9
Oy = —— . and oy = = — | - = 3
AT 08 1 112 ¥—=r=\2 28

Therefore, the correlation coefficient between X and Y is

and

we obtain

oxy —9/56 1

_— _ =B
PXY = oxoy ~ JM5/112)0/28) 5

Example 4.16:/ Find the correlation coefficient of X and Y in Example 4.14.
Solution: Because

1 9 R o ,
E(X?) = / 4z° dx = = and E(Y*) = [ P 1-y?)dy=1- -
0 ; JO

we conclude that

Hence,

1/225 1
Iy =
PXY 295)

(2/75)(11/

U N
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4.3 Means and Variances of Linear Combinations of
Random Variables

Theorem 4.5: |1f @ and b are constants, then

FlaX +b)=aF(X) +b.

Proof: By the definition of expected value,
E(aX +b) = / (ax +b)f(x) dx = u/ xf(x) dr + h/ f(x) dux.

The first integral on the right is £(X) and the second integral equals 1. Therefore,
(=] l=] (=) ]
we have

E(aX +b) =aFE(X)+b. A
23
Corollary 4.1: L-"‘f‘“in: a =0, we see that E(b) = b. ‘
Corollary 4.2: IHG'”illg b =0, we see that E(aX) =aF(X). ‘

Example 4.17: Applying Theorem 4.5 to the discrete random variable f(X) = 2X - 1, rework
Example 4.4 on page 115.
Solution: According to Theorem 4.5, we can write

E(2X -1)=2E(X) - 1.
Now

9
n=EX)= Z.r‘_l‘(.a‘)
r=4

- ()0 (g)r0(3)+0 () o) o) -7

as before. . |

Therefore,

24
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Example 4.18:! Applying Theorem 4.5 to the continuous random variable g(.X') = 4X + 3, rework
Example 4.5 on page 115.
Solution: For Example 4.5, we may use Theorem 4.5 to write

E(4X +3)=4E(X)+3.

2 2 v S 4
E(X) = / T (J dr = / - dr = -
e M) 1

E(4X +3)=(4) (7;) +3=8,

as before. .

.\ ow

Therefore,

Theorem 4.6: | The expected value of the sum or difference of two or more funetions of a random
| variable X' is the sum or difference of the expected values of the functions. That

| 18,
|

n"."j{i X)) h(X l: = I".'[_tH X )] + f;'{h( X )].

Proof: By definition,

lg(x) £ h(z)|f(x) dx
e

’ 7\'_ 0
[ glx)f(x) dr £ / hix)f(r) dr
= deas

o0

Elg(X)£ (X)) =

= E[g(X)] + E[h(X)]. £

25

Example 4.19:] Let X be a random variable with probability distribution as follows:
z |0 1 2 3

f@) |3 L o i

Find the expected value of Y = (X — 1) .
Solution: Applying Theorem 4.6 to the function ¥ = (X — 1)2, we can write

E[(X -1)?=E(X?-2X +1) = E(X?) - 2E(X)+ E(1).

From Corollary 4.1, E(1) = 1, and by direct computation,

E(X) = (0) (15) + (1) (%) + (2)(0) + (3) (%) =1 and
y B 1 1
E(X?) = (0) (-3) + (1) (5) + (4)(0) + (9) (6) = 2.

Hence,

26
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Example

1.20:! The weekly demand for a certain drink, in thousands of liters, at a chain of con-
venience stores is a continuous random variable g(X) = X2 + X — 2, where X has
the density function

fz) = {'_’(‘r —-1), 1<xr<?2,

0. elsewhere.

Find the expected value of the weekly demand for the drink.

Solution: By Theorem 4.6, we write

E(X?2+X -2)=E(X%+ E(X)- E(2).

From Corollary 4.1, E(2) = 2, and by direct integration,

5 R 2 17
E(X)= / 2¢(x — 1) dx = —) and E(X*) = / 202 (r — 1) dr = —‘
& 3 i 6
Now
p I B 5
v 2 TN Tt Tt ) | i
E(X*+X-2) g T3~ 2 3’

27

Theorem 4.7:

The expected value of the sum or difference of two or more functions of the random
variables X and Y is the sum or difference of the expected values of the functions.
That is,

E[g(X,Y) £ h(X,Y)] = E[g(X,Y)] £ E[h(X,Y)].

Proof: By Definition 4.2,

Elg(X,Y)xh(: / / g(z,y) £ h(z, )] f(z,y) dr dy

/ / gz, y)f(x,y) dr (h,':l:/ / (z,y)f(x,y) dx dy

= E[g(X.Y)] £ E[h(X.Y)).

Corollary 4.3:

Setting g(X,Y) = g(X) and h(X,Y) = A(Y), we see that

Elg(X) £ h(Y)] = E[g(X)] £ E[R(Y)].

28
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Corollary 4.4: |Setting g(X.Y) = X and h(X.Y) =Y, we see that

E[X £Y] = E[X] + E[Y].

If X represents the daily production of some item from machine A and Y the
daily production of the same kind of item from machine B, then X +Y represents
the total number of items produced daily by both machines. Corollary 4.4 states
that the average daily production for both machines is equal to the sum of the
average daily production of each machine.

Theorem 4.8: Let X and Y be two illlll-pvlllll'lll random variables. Then

E(XY)=E(X)E(Y).

Proof: By Definition 4.2,

x oC
E(XY)= / f xyf(r.y) dr dy.
—o0 J—o0

Since X and Y are independent, we may write
f(z.y) = g(x)h(y),

where g(x) and h(y) are the marginal distributions of X and Y, I'['Slll‘l'li\'l'l)'. Hence,

o0 x o0 o0
E(XY)= f f ryg(x)h(y) dr dy = /- xg(x) dx [ yh(y) dy
—o0 J =00 J =00 J =00

= E(X)E(Y). M |

29

Corollary 4.5: ‘l.n-l X and Y be two independent random variables. Then o, = 0.

Proof: The proof can be carried out by using Theorems 4.4 and 4.8. M |

Example 4.21:/ It is known that the ratio of gallinm to arsenide does not affect the functioning
of gallinm-arsenide wafers, which are the main components of microchips. Let X
denote the ratio of gallium to arsenide and Y denote the functional wafers retrieved
(llll'ill:.\ a 1-hour pt'l'ilul. X and Y are illl|=-|1|'l|lll'lll random variables with the juilll
density function

.2
flaig) = {Lih’) Dce<2, 0<y<l

0, elsewhere.

Show that E(XY) = E(X)E(Y). as Theorem 4.8 suggests.
Solution: By definition,

1 p2 .2 .2 -
22y(1+3 : !
I;‘(.\')')=[ f FUL T iy =2, B(X) =3, and B(¥)=
JO 0 | ;

)
[ :

E(X)E(Y) = (_:) (:') = — = B(XY)
- ¢ A

We conclude this section by proving one theorem and presenting several corol-

| o

Hence,

| o

laries that are useful for calculating variances or standard deviations.

30
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Theorem 4.9:
b, ¢

It X and Y are random variables with joint probability distribution f(x.y) and a,

wuid ¢ are constants, then

5 9 o
= ﬂzﬂ'i - F)"(T;“. -+ ‘_)uhrr'\.,‘.'

2
Tq X+bY +¢

by

Proof: By definition, 02y 1. . = E{[(aX +bY + ¢) — ptax by +c)*}. Now

fax+bY+c = E(aX +bY +¢) =aE(X)+bE(Y )+ c= apx + buy + ¢,
using Corollary 4.4 followed by Corollary 4.2. Therefore,

= E{[a(X — px) + b(Y — py )]2}

= a’E[(X — pux)?] + B2E[(Y — py)?] + 2abE[(X — pix)(Y — piy))

— 1.-20'_2\. + h")rr"z. + 2abo xy . 1

2
Oa X+bY +¢

Using Theorem 4.9, we have the following corollaries.

31

Corollary 4.6:

Setting b = 0, we see that

Corollary 4.7:

Corollary 4.8:

2 2 2
OX4c=0x =0
Setting b = 0 and ¢ = 0, we see that
2 2.2 2.2
Oox = a‘cy =a‘c”.

Corollaries 4.6 and 4.7 state that the variance is unchanged if a constant is
added to or subtracted from a random variable. The addition or subtraction of
a constant simply shifts the values of X to the right or to the left but does not
change their variability. However, if a random variable is multiplied or divided by
a constant, then Corollaries 4.6 and 4.8 state that the variance is multiplied or
divided by the square of the constant.
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Corollary 4.9: If X and Y are independent random variables, then

2 LR L
Tax4py =@ 0x +b0y.

The result stated in Corollary 4.9 is obtained from Theorem 4.9 by invoking
Corollary 4.5.

Corollary 4.10: If X and Y are independent random variables, then

2 N 2.2
Oax-pby =@ 0x + b0y,

Corollary 4.10 follows when & in Corollary 4.9 is replaced by —b. Generalizing
to a linear combination of n independent random variables, we have Corollary 4.11.

Corollary 4.11: If X1,X5,...,2 X,, are independent random variables, then

2 .. 5. | s 2.2
Oa, X 1+a2Xa+-+an Xn = 010X, T 020, + -+ a,0% .

Example 4,22: If X and Y are random variables with variances o2

3 ;
and o3 = 4 and covariance

oxy = —2, find the variance of the random variable 3X —4Y +8.
Solution: 2 P .
né = "é.\'fl‘b'ﬁi = ng"vin, (by Corollary 4.6)

= !Jaf, + 1602 — 240y (by Theorem 4.9)

= (9)(2) + (16)(4) — (24)(-2) = 130. . |
Example 4.23: Let X and Y denote the amounts of two different types of impurities in a batch
of a certain chemical product. Suppose that X and Y are independent random

variables with variances 02 = 2 and 02 = 3. Find the variance of the random
variable Z = 3X — 2Y + 5.
Holtaon: rr% = ”5_\‘-2}'1—5 = rr;;’_\-_z,- (by Corollary 4.6)
= !'(T_';) + Irr:": (by Corollary 4.10)
= (9)(2) + (4)(3) = 30. -
33
What If the Function Is Nonlinear?
;\‘HH".HH.H‘(H‘ ol . . l'}'zqtj.) (,.2_
Elg(X Elg(X)] = glpx) + ——5— o
= 2

r=py

Example 4.24: Given the random variable X with mean px and variance n": give the second-order

approximation to X).
" " - z ® . . < i o
Solution: Since % =¢* and ‘—{'JT';.— = ¢*, we obtain F(e X) 2 etx (1 + o%/2). A

Similarly, we ean develop an approximation for Var[g(xr)] by taking the variance
of both sides of the first-order Taylor series expansion of g(x).

pproximation 2aiz)1?
Var[g(X Var[g(X)] = [' !l(-')]

E dr

P1S

T=py

Example 4.25: Given the random variable X as in Example 4.24, give an approximate formula for

(
Var(g(x)].

Solution: Again % = ¢*; thus, Var(X) = 42""02. M |
These approximations can be extended to nonlinear functions of more than one
random variable.
Given a set of independent random variables Xy, Xa. ..., X with means .,
My Jug. and variances rrf.r'r.j ..... (rf_. respectively, let
Y = h(X1, Xo,...,- k)
be a nonlinear function: then the followin » approximations for E(Y) and
Var(Y):
k 2 a2
e o [0h(xy,xq,....: ry)
E(Y) = h(uy, pa, ..., [4&)+Z ‘)' [’7 5
=1 - 2e=i, 1SSk
&
Oh(xy, xg, ... 1) 2
Var(Y') = a;
=3 o -
i=1 xe=ppis 1<i<k
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Example

Give approximations for £(Y) and Var(Y).

Oy

Solution: For E(Y), we must use g% = L and §¥ =

As a result,

Var(Y) = — 0%

.26: Consider two independent random variables X and Z with means p, and g, and
3 9 2 o 5 & 5
variances oy and o7, respectively. Consider a random variable
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The Bernoulli Process

Strictly speaking, the Bernoulli process must possess the following properties:
1. The experiment consists of repeated trials.
2. Each trial results in an outcome that may be classified as a success or a failure.
3. The probability of success, denoted by p, remains constant from trial to trial.
4. The repeated trials are independent.

Consider the set of Bernoulli trials where three items are selected at random
from a manutacturing process, inspected, and classified as defective or nondefective.
A defective item is designated a success. The number of successes is a random
variable X assuming integral values from 0 through 3. The eight possible outcomes
and the corresponding values of X are

TATAT

Outcome | NNN NDN NND DNN NDD DND DDN DDD
T 0 1 1 1 2 2 2 3

Since the items are selected independently and we assume that the process produces
25% defectives, we have

P(NDN) = P(N)P(D)P(N) = G) G) G) = e??

Similar caleulations yield the probabilities for the other possible outcomes. The
probability distribution of X is therefore

El-| e

Binomial Distribution

The number X of successes in n Bernoulli trials is called a binomial random
variable. The probability distribution of this discrete random variable is called
the binomial distribution, and its values will be denoted by b(z;n,p) since they
depend on the number of trials and the probability of a success on a given trial.
Thus, for the probability distribution of X, the number of defectives is

1 9
P(X=2)=12)=b (2,3. 1) -
Binomial A Bernoulli trial can result in a success with probability p and a failure with

Distribution  probability ¢ = 1 — p. Then the probability distribution of the binomial random
variable X, the number of successes in n independent trials, is

b(z;n,p) = (:)p”q”_r. =012, ....5

Note that when n = 3 and p = 1/4, the probability distribution of X, the number
of defectives, may be written as

o(=32) Q) () e

rather than in the tabular form on page 144.
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Example 5.2:| The probability that a patient recovers from a rare blood disease is 0.4. If 15 people
are known to have contracted this disease, what is the probability that (a) at least
10 survive, (b) from 3 to 8 survive, and (¢) exactly 5 survive?
Solution: Let X be the number of people who survive.

(1) PX =10) = p(x=10)+P(X=11)+P(X=12)+P(X=13) +P(X=14)+P(X=15)

= 0.0338

(h) P(3< X <8) = P(X=3)+P(X=4)+P(X=5)+P(X=6) +P(X=7)+P(X=8)

0.8779

(c) P(X =5)=5(5:15,04) = 0.1859

Example 5.3:1 A large chain retailer purchases a certain kind of electronic device from a manu-

facturer. The manufacturer indicates that the defective rate of the device is 3%.
(a) The inspector randomly picks 20 items from a shipment. What is the proba-
bility that there will be at least one defective item among these 207

(b

—

Suppose that the retailer receives 10 shipments i a month and the inspector
randomly tests 20 devices per shipment. What is the probability that there
will be exactly 3 shipments each containing at least one defective device among
the 20 that are selected and tested from the shipment?

Solution: (a) Denote by X the number of defective devices among the 20. Then X follows

a b(r;20,0.03) distribution. Hence,

P(X >1)=1— P(X = 0) = 1 — b(0:20,0.03)
=1— (0.03)°(1 — 0.03)20-0 = 0.4562.

(b

-~

In this case, each shipment can either contain at least one defective item or
not. Hence, testing of each shipment can be viewed as a Bernoulli trial with
p = 0.4562 from part (a). Assuming independence from shipment to shipment
and denoting by Y the number of shipments containing at least one defective
item, V" follows another binomial distribution b(y; 10, 0.4562). Therefore,

P(Y=3)= ('30)0.45523(1 —0.4562)7 = 0.1602. 1
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Theorem 5.1: | The mean and variance of the binomial distribution b(x;n, p) are

= np and o= npg.

Proof: Let the outcome on the jth trial be represented by a Bernoulli random variable
I;, which assumes the values 0 and 1 with probabilities ¢ and p, respectively.
Therefore, in a binomial experiment the number of successes can be written as the
sum of the n independent indicator variables. Hence,

X=L+Iz+:-+1,.
The mean of any I; is E(I;) = (0)(g) + (1)(p) = p. Therefore, using Corollary 4.4
on page 131, the mean of the binomial distribution is
p=EX)=EL)+E(L)+---+E(I,)=p+p+---+p=np.
\_..v_/
n terms

The variance of any [; is U%J = E(I?) —p% = (0)2(q) +(D)3(p) —p® = p(1—p) = pg.
Extending Corollary 4.11 to the case of n independent Bernoulli variables gives the
variance of the binomial distribution as

ok =0}, + 07, +--+0;, =pg+pg+---+pg=npq.

L

n terms N |

Example 5. l:‘ It is conjectured that an impurity exists in 30% of all drinking wells in a certain
rural community. In order to gain some insight into the true extent of the problem,
it is determined that some testing is necessary. It is too expensive to test all of the
wells in the area, so 10 are randomly selected for testing.

(a) Using the binomial distribution, what is the probability that exactly 3 wells
have the impurity, assuming that the conjecture is correct?

(b) What is the probability that more than 3 wells are impure?

Solution: (a) We require 3 P
5(3:10,0.3) = Z b(x;10,0.3) — Z b(x;10,0.3) = 0.6496 — 0.3828 = 0.2668.
z=0 z=0
(b) In this case, P(X > 3) = 1 — 0.6496 = 0.3504. A

Example ,"».-'v:‘ Find the mean and variance of the binomial random variable of Example 5.2, and
then use Chebyshev’s theorem (on page 137) to interpret the interval p + 2o,
Solution: Since Example 5.2 was a binomial experiment with n = 15 and p = 0.4, by Theorem
5.1, we have

= (15)(0.4) = 6 and o2 = (15)(0.4)(0.6) = 3.6.

Taking the square root of 3.6, we find that & = 1.897. Hence, the required interval is
6+(2)(1.897), or from 2.206 to 9.794. Chebyshev’s theorem states that the number
of recoveries among 15 patients who contracted the disease has a probability of at
least 3/4 of falling between 2.206 and 9.794 or, because the data are discrete,
between 2 and 10 inclusive. . |

There are solutions in which the computation of binomial probabilities may
allow us to draw a scientific inference about population after data are collected.
An illustration is given in the next example.
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Example 5.6:] Consider the situation of Example 5.4. The notion that 30% of the wells are impure
is merely a conjecture put forth by the area water board. Suppose 10 wells are
randomly selected and 6 are found to contain the impurity. What does this imply
about the conjecture? Use a probability statement.

Solution: We must first ask: “If the conjecture is correct, is it likely that we would find 6 or
more impure wells?”
10 &
P(X >6) =) b(«;10,0.3) = ) " b(«;10,0.3) = 1 — 0.9527 = 0.0473.
=0 =0
As a result, it is very unlikely (4.7% chance) that 6 or more wells would be found
impure if only 30% of all are impure. This casts considerable doubt on the conjec-
ture and suggests that the impurity problem is much more severe. it |
As the reader should realize by now, in many applications there are more than
two possible outcomes. To borrow an example from the field of genetics, the color of
guinea pigs produced as offspring may be red, black, or white. Often the “defective”
or “not defective” dichotomy is truly an oversimplification in engineering situations.
Indeed. there are often more than two categories that characterize items or parts
coming off an assembly line.

Hypergeometric Distribution

Hypergeometric  The probability distribution of the hypergeometric random variable X, the num-
Distribution  ber of successes in a random sample of size n selected from N items of which &
are labeled success and N — k labeled failure, is

GG
@

h(z; N,n, k} = max{0,n — (N — k)} € z < min{n, k}.

Example .3‘9:| Lots of 40 components each are deemed unacceptable if they contain 3 or more
detectives. The procedure for sampling a lot is to select 5 components at random
and to reject the lot if a defective is found. What is the probability that exactly 1
defective is found in the sample if there are 3 defectives in the entire lot?
Solution: Using the hypergeometric distribution withn =5, N =40, k=3, and z = 1, we
find the probability of obtaining 1 defective to be

HIV)]
(%)
Once again, this plan is not desirable since it detects a bad lot (3 defectives) only

about 30% of the time.

= 0.3011.

h(1;40,5,3) =

10
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Theorem 5.2: | The mean and variance of the hypergeometric distribution h(z: N, n, k) are

p:%andaz=;\1_n‘? k (l—i).

TR AT N

Example 5.10:| Let us now reinvestigate Example 3.4 on page 83. The purpose of this example was
to illustrate the notion of a random variable and the corresponding sample space.
In the example, we have a lot of 100 items of which 12 are defective. What is the
probability that in a sample of 10, 3 are defective?

Solution: Using the hypergeometric probability function, we have

124 fBE
h(3;100,10,12) = % = 0.08.
10

11

Example 5.11:| Find the mean and variance of the random variable of Example 5.9 and then use
Chebyshev’s theorem to interpret the interval g £ 2o.
Solution: Since Example 5.9 was a hypergeometric experiment with N = 40, n = 5, and
k =3, by Theorem 5.2, we have
(53 _3

T 0.375,

. 40-5Y .. (3 3N ey
g (T) (5) (E) (1 _E) =0.3113.

Taking the square root of 0.3113, we find that & = 0.558. Hence, the required
interval is 0.375 £ (2)(0.558), or from —0.741 to 1.491. Chebyshev’s theorem
states that the number of defectives obtained when 5 components are selected at
random from a lot of 40 components of which 3 are defective has a probability of
at least 3/4 of falling between —0.741 and 1.491. That is, at least three-fourths of
the time, the 5 components include fewer than 2 defectives. o |

=

and

12

4/7/2020



Theorem 5.2: | The mean and variance of the hypergeometric distribution h(x; N, n, k) are

#=ﬂT{“ansz=m_n‘nli(l—i).

N-1 N N

The proof for the mean is shown in Appendix A.24.

Example 5.10:| Let us now reinvestigate Example 3.4 on page 83. The purpose of this example was
to illustrate the notion of a random variable and the corresponding sample space.
In the example, we have a lot of 100 items of which 12 are defective. What is the
probability that in a sample of 10, 3 are defective?

Solution: Using the hypergeometric probahility function, we have

1
10

12y (a8
h(3:100,10,12) = % =0.08.

13

Example 5.11:| Find the mean and variance of the random wvariable of Example 5.9 and then use
Chebyshev’'s theorem to interpret the interval p + 2a.
Solution: Since Example 5.9 was a hypergeometric experiment with N = 40, n = 5, and
k = 3, by Theorem 5.2, we have

(B)3) _
40

, (40—5 3 3 il
5 (_39 ){5} (E) (1_5) — 0.3113.

Taking the square root of 0.3113, we find that ¢ = 0.558. Hence, the required
interval is 0.375 £ (2)(0.558), or from —0.741 to 1.491. Chebyshev's theorem
states that the number of defectives obtained when 5 components are selected at
random from a lot of 40 components of which 3 are defective has a probability of
at least 3/4 of falling between —0.741 and 1.491. That is, at least three-fourths of
the time, the 5 components include fewer than 2 defectives. . |

= % = 0.375,

and

14
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Ne, If repeated independent trials can result in a success with probability p and
Binomial a failure with probability ¢ = 1 — p, then the probability distribution of the
Distribution  random variable X, the number of the trial on which the kth success occurs, is

Example 5.14:|In an NBA (National Basketball Association) championship series, the team that
wins four games out of seven is the winner. Suppose that teams A and B face each
other in the championship games and that team A has probability 0.55 of winning
a game over team B.

{(a) What is the probability that team A will win the series in 6 games?
(b) What is the probability that team A will win the series?

(c) If teams A and B were facing each other in a regional playoff series, which is
decided by winning three out of five games, what is the probability that team
A would win the series?

Solution: (a) b*(6:4,0.55) = (3)0.55%(1 — 0.55)°~* = 0.1853
(b) P(team A wins the championship series) is
b*(4:4,0.55) + b*(5; 4,0.55) + b*(6: 4, 0.55) + b*(7:4.0.55)
= 0.0915 + 0.1647 + 0.1853 + 0.1668 = 0.6083.

(c) P(team A wins the playoff) is

b*(3;3,0.55) + b*(4; 3, 0.55) + b*(5;3,0.55)
= 0.1664 + 0.2246 + 0.2021 = 0.5031. 1

15

Geometric  If repeated independent trials can result in a success with probability p and
Distribution  a failure with probability ¢ = 1 — p, then the probability distribution of the
random variable X, the number of the trial on which the first success occurs, is

glmp)=p—, =z=1,28

Example 5.15:| For a certain manufacturing process, it is known that, on the average, 1 in every
100 items is defective. What is the probability that the fifth item inspected is the
first defective item found?

Solution: Using the geometric distribution with = = 5 and p = 0.01, we have

g(5;0.01) = (0.01)(0.99)* = 0.0096. a

Example 5.16:| At a “busy time,” a telephone exchange is very near capacity, so callers have
difficulty placing their calls. It may be of interest to know the number of attempts
necessary in order to make a connection. Suppose that we let p = 0.05 be the
probability of a connection during a busy time. We are interested in knowing the
probability that 5 attempts are necessary for a successful call.

Solution: Using the geometric distribution with r = 5 and p = 0.05 yields

P(X =z) = g(5:0.05) = (0.05)(0.95)* = 0.041. o |

QQuite often, in applications dealing with the geometric distribution, the mean

and variance are important. For example, in Example 5.16, the erpected number

of calls necessary to make a connection is quite important. The following theorem
states without proof the mean and variance of the geometric distribution.

16
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Theorem 5.3:| The mean and variance of a random variable following the geometric distribution
are
g [
p==andc?= zp.
F P
Vv
17

Poisson The probability distribution of the Poisson random wariable X | representing
Dhistribution  the number of outcomes occurring in a given time interval or specified region

denoted by t, 1s X
e L)
pl;At) = ey

where A is the average number of outcomes per unit time, distance, area, or
volume and e = 2.7T1828 .. ..

Table A.2 contains Poisson probability sums,
r
P(r;xt) = p(z; At),
=0

for selected values of At ranging from 0.1 to 18.0. We illustrate the use of this table
with the following two examples.

Example 5.17:| During a laboratory experiment, the average number of radioactive particles pass-
ing through a counter in 1 millisecond is 4. What is the probability that 6 particles
enter the counter in a given millisecond?

Solution: Using the Poisson distribution with @ = 6 and At = 4 and referring to Table A.2,
we have

G 5

o 145
: 3 p(z:4) — S p(z;4) = 0.8803 — 0.7851 = 0.1042.
0

p(6:4) = i
T

=0 r=

18
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Example 5.1‘3:| In a certain industrial facility, accidents occur infrequently. It is known that the
probability of an accident on any given day is 0.005 and accidents are independent
of each other.

{(a) What is the probability that in any given period of 400 days there will be an
accident on one day?

(b) What is the probability that there are at most three days with an accident?

Solution: Let X be a binomial random variable with n = 400 and p = 0.005. Thus, np = 2.
Using the Poisson approximation,

(a) P(X =1) =¢22! = 0.271 and

(b) P(X <3)= ¥ e227 /2! = 0.857.

=0 J

Example 5.?0:| In a manufacturing process where glass products are made, defects or bubbles
occur, occasionally rendering the piece undesirable for marketing. It is known
that, on average, 1 in every 1000 of these items produced has one or more bubbles.
What is the probability that a random sample of 8000 will yield fewer than 7 items
possessing buhbles?

Solution: This is essentially a binomial experiment with n = 8000 and p = 0.001. Since
p is very close to 0 and n is quite large, we shall approximate with the Poisson
distribution using

¢ = (8000)(0.001) = 8.

Hence, if X represents the number of bubbles, we have

[
P(X <7) ="y b(x;8000,0.001) ~ p(z;8) = 0.3134.

r=(

19
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Chapter 6

Some Continuous Probability
Distributions

Uniforin - The density function of the continuous uniform random variable X on the in-
Distribution terval [4, B] is

f(z:A,B) = {T’L_‘ e s

0, elsewhere.

Example 6.1:| Suppose that a large conference room at a certain company can be reserved for no
more than 4 hours. Both long and short conferences occur quite often. In fact, it
can be assumed that the length X of a conference has a uniform distribution on
the interval [0, 4].

f(x)

[ 1L aem—
=

i
I
I
I
|
I
|
1
0 1

Figure 6.1: The density function for a random variable on the interval [1, 3].
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{a) What is the probability density function?
(b) What is the probability that any given conference lasts at least 3 hours?
Solution: (a) The appropriate density function for the uniformly distributed random vari-
able X in this situation is

1 0<z<d,
f(r)={ -

1
0, elsewhere.

(b) PIX >3] = [ ldr=1. 3

Theorem 6.1: | The mean and variance of the uniform distribution are

A+B 5 (B—A)
p=— and o e

Normal Distribution

rmal  The density of the normal random variable X, with mean p and variance o2, is
Distribution

N

1 N 7 e |
n(z;p,o) = o e wWIEH e < <o,
ama

where m = 3.14159. .. and e = 2.71828 . ...

7 (T /

/

l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

=
I

Figure 6.3: Normal curves with p; < pz and o0, = 02.
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Hy=H

Figure 6.4: Normal curves with gty = po and o7 < g2.
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Figure 6.5: Normal curves with g; < po and 7 < o2,

Theorem 6.2:

The mean and variance of n(x;p,c) are p and o2, respectively. Hence, the stan-
dard deviation is o.

Areas under the Normal Curve

The curve of any continuous probability distribution or density function is con-
structed so that the area under the curve bounded by the two ordinates © =
and r = r; equals the probability that the random variable X assumes a value
between x = x, and * = z». Thus, for the normal curve in Figure 6.6,

72 1 A 1 2
Plry < X <x3) = f n(z;p,0) dr = / e IV dp

1

1

is represented by the area of the shaded region.

™

1
1
I
1
1
1
|
1
1
I
i

u

X

Figure 6.6: P(x; < X < x3) = area of the shaded region.
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Figure 6.7: P(x; < X < x2) for different normal curves.

of a normal random variable Z with mean 0 and variance 1. This can be done by
means of the transformation

Definition 6.1: | The distribution of a normal random variable with mean 0 and variance 1 is called
a standard normal distribution.

Figure 6.8: The original and transformed normal distributions.

Example 6,2:‘ Given a standard normal distribution, find the area under the curve that lies
(a) to the right of z = 1.84 and
(b} between z = —1.97 and z = 0.86.

=,
g

\\“*-.h
B i e
N
N
S
o |

Figure 6.9: Areas for Example 6.2.

Solution: See Figure 6.9 for the specific areas.

(a) The area in Figure 6.9(a) to the right of z = 1.84 is equal to 1 minus the area

in Table A.3 to the left of z = 1.84, namely, 1 — 0.9671 = 0.0329.

(b) The area in Figure 6.9(b) between z = —1.97 and 2z = 0.86 is equal to the
area to the left of » = 0.86 minus the area to the left of = = —1.97. From
Table A.3 we find the desired area to be 0.8051 — 0.0244 = 0.7807. i |
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Example [i.3:| Given a standard normal distribution
(a) P(Z = k)=0.3015 and
(b) Pk < Z < —0.18) = 0.4197.

, find the value of k such that

P4
PN
ik
[ | 1
I I'.
[
! I A
/ 1 \
/ | |
1 \
|
I \
/ L A / \
! | il
P4 | u.ams&_, i _{ oate7) N
s T TS 3 018
(a) (b)

Figure 6.10: Areas for Example 6.3.
Solution: Distributions and the desired areas are shown in Figure 6.10.

(a) In Figure 6.10(a), we see that the k value leaving an area of 0.3015 to the
right must then leave an area of L6985 to the left. From Table A.3 it follows
that k = 0.52.

{b) From Table A.3 we note that the total area to the left of —0.18 is equal to
0.4286. In Figure 6.10(b), we see that the area between k and —0.18 is 0.4197,

so the area to the left of k& must be 0.4286 — 0.4197 = 0.0089. Hence, from
Table A3, we have k = —2.37. |

Example 6.4:| Given a random variable X having a normal distribution with g = 50 and o = 10
find the probability that X assumes a value between 45 and 62.

S

-05

12 L
Figure 6.11: Area for Example 6.4.
Solution: The = values corresponding to x; = 45 and 1y = 62 are

45 — 50 62 — 50
5= de = —0.5and z = iOJ =12,

Therefore,
P45 <X <62)=P(-05< Z <12).

P(-0.5 < Z < 1.2) is shown by the area of the shaded region in Figure 6.11. This
area may be found by subtracting the area to the left of the ordinate = = —0.5
from the entire area to the left of z = 1.2, Using Table A.3, we have

PA5< X <62)=P(-05< Z<1.2)=P(Z <12) - P(Z < —0.5)

= .8849 — 0.3085 = 0.5764. N |
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Example 6.5:] Given that X has a normal distribution with g = 300 and ¢ = 50, find the
probability that X assumes a value greater than 362.

Solution: The normal probability distribution with the desired area shaded is shown in
Figure 6.12. To find P(X > 362), we need to evaluate the area under the normal
curve to the right of x = 362. This can be done by transforming z = 362 to the
corresponding z value, obtaining the area to the left of z from Table A.3, and then
subtracting this area from 1. We find that

_ 362300

=] 1.24.

Hence,

P(X >362) =P(Z >124) =1—- P(Z <1.24) =1 - 0.8925 = 0.1075.

b
\e=s0

S

300 362

Figure 6.12: Area for Example 6.5,
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Example G.G:' Given a normal distribution with g = 40 and & = 6, find the value of z that has
(a) 45% of the area to the left and

(b) 14% of the area to the right.

Figure 6.13: Areas for Example 6.6.

Solution: (a) An area of 0.45 to the left of the desired z value is shaded in Figure 6.13(a).
We require a z value that leaves an area of (.45 to the left. From Table A.3
we find P(Z < —0.13) = 0.45, so the desired z value is —0.13. Hence,

z = (6)(—0.13) + 40 = 30.92,

=

In Figure 6.13(b), we shade an area equal to (.14 to the right of the desired
x value. This time we require a z value that leaves 0.14 of the area to the
right and hence an area of 0.86 to the left. Again, from Table A3, we find
P(Z < 1.08) = 0.86, so the desired = value is 1.08 and

o= (6)(1.08) + 40 = 46.48. 1

12



Example 6.7:| A certain type of storage battery lasts, on average, 3.0 years with a standard
deviation of 0.5 year. Assuming that battery life is normally distributed, find the
probability that a given battery will last less than 2.3 years.

Solution: First construct a diagram such as Figure 6.14, showing the given distribution of
battery lives and the desired area. To find P{X < 2.3), we need to evaluate the
area under the normal curve to the left of 2.3. This is accomplished by finding the
area to the left of the corresponding z value. Hence, we find that

_23-3
TR R T

—1.4,

and then, using Table A.3, we have

P(X <2.3) = P(Z < —1.4) = 0.0808.

A
TN —T
iR |
_// I N\e=0s5 / ! \\6= 40
/ | I b
/ | N / |
| . ' I Lo
/ | N A | S
. - I -, o I .
23 3 778 800 834
Figure 6.14: Area for Example 6.7. Figure 6.15: Area for Example 6.8,

13

Example 6.8:| An electrical firm manufactures light bulbs that have a life, before burn-out, that
is normally distributed with mean equal to 800 hours and a standard deviation of
40 hours. Find the probability that a bulb burns between 778 and 834 hours.
Solution: The distribution of light bulb life is illustrated in Figure 6.15. The = values corre-
sponding to x; = 778 and x; = 834 are

778 800
-

834 800

5
) 0.85.

—0.55 and 2, =

|
Hence,

P(778 < X < 834) = P(—0.55 < Z < 0.85) = P(Z < 0.85) — P(Z < —0.55)
= 0.8023 — 0.2012 = 0.5111. i |

Example G‘I(J:|Gauges are used to reject all components for which a certain dimension is not
within the specification 1.50 + d. It is known that this measurement is normally
distributed with mean 1.50 and standard deviation 0.2. Determine the value d
such that the specifications “cover” 95% of the measurements.
Solution: From Table A.3 we know that

P(-1.96 < Z < 1.96) = 0.95.
Therefore,

_ (1.50+d)— 150

1.96
0.2

from which we obtain
d = (0.2)(1.96) = 0.392.

An illustration of the specifications is shown in Figure 6.17. M |

14
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Example 6.9:|In an industrial process, the diameter of a ball bearing is an important measure-
ment. The buyer sets specifications for the diameter to be 3.0 £ 0.01 cm. The

implication is that no part falling outside these specifications will be accepted. It
is known that in the process the diameter of a ball bearing has a normal distribu-
tion with mean p = 3.0 and standard deviation o = 0.005. On average, how many
manufactured ball bearings will be scrapped?

Solution: The distribution of diameters is illustrated by Figure 6.16. The values correspond-
ing to the specification limits are x; = 2.99 and z, = 3.01. The corresponding =
values are

n= 72‘%?0053'0 =-20and z» = 73'%1-0030 =+2.0.
Hence,
P(2.99 < X <3.01) = P(-2.0 < Z < 2.0).

From Table A.3, P(Z < —2.0) = 0.0228. Due to symmetry of the normal distribu-
tion, we find that

P(Z < —2.0) + P(Z > 2.0) = 2(0.0228) = 0.0456.

As a result, it is anticipated that, on average, 4.56% of manufactured ball bearings
will be scrapped. o |

/ TN\& 0.005 / //T\

) &:ig
|
1
1
!
\
!
0.0228 0.025 1
]

2.99 30 3.01 1.108 1.500 1.802

0.0228 0.025

Figure 6.16: Area for Example 6.9. Figure 6.17: Specifications for Example 6.10.
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Example 6.11:| A certain machine makes electrical resistors having a mean resistance of 40 ohms
and a standard deviation of 2 ohms. Assuming that the resistance follows a normal
distribution and can be measured to any degree of accuracy, what percentage of
resistors will have a resistance exceeding 43 ohms?

Solution: A percentage is found by multiplying the relative frequency by 100%. Since the
relative frequency for an interval is equal to the probability of a value falling in the
interval, we must find the area to the right of = 43 in Figure 6.18. This can be
done by transforming = = 43 to the corresponding z value, obtaining the area to
the left of z from Table A.3, and then subtracting this area from 1. We find

43-40

3 1.5.

=

Therefore,

P(X > 43) = P(Z > 1.5) =1 — P(Z < 1.5) = 1 — 0.9332 = 0.0668.

Hence, 6.68% of the resistors will have a resistance exceeding 43 ohms. . |
-~ \ ’
7 Y b
4 o =20 /!
\\\
\“\ /.

\ .
S ——————————————a
///

Figure 6.18: Area for Example 6.11. Figure 6.19: Area for Example 6.12.
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Example 6.12:| Find the percentage of resistances exceeding 43 ohms for Example 6.11 if resistance
is measured to the nearest ohm.
Solution: This problem differs from that in Example 6.11 in that we now assign a measure-
ment of 43 ohms to all resistors whose resistances are greater than 42.5 and less
than 43.5. We are actually approximating a discrete distribution by means of a
continuous normal distribution. The required area is the region shaded to the right
of 43.5 in Figure 6.19. We now find that

Il
I
el
iz
o

Hence,
P(X = 435)=P(Z > 1.75) =1 — P(Z < 1.75) = 1 — 0.9500 = 0.0401.

Therefore, 4.01% of the resistances exceed 43 ohms when measured to the nearest
ohm. The difference 6.68% — 4.01% = 2.67% between this answer and that of
Example 6.11 represents all those resistance values greater than 43 and less than
43.5 that are now being recorded as 43 ohms. i |

17

Example 6.13:| The average grade for an exam is 74, and the standard deviation is 7. If 12% of
the class is given As, and the grades are curved to follow a normal distribution,
what is the lowest possible A and the highest possible B?
Solution: In this example, we begin with a known area of probability, find the z value, and
then determine = from the formula z = oz + p. An area of 0.12, corresponding
to the fraction of students receiving As, is shaded in Figure 6.20. We require a 2
value that leaves (.12 of the area to the right and, hence, an area of 0.88 to the
left. From Table A.3, P(Z < 1.18) has the closest value to 0.88, so the desired z
value is 1.18. Hence,

2 = (7)(118) + 74 = 82.26.

Therefore, the lowest A is 83 and the highest B is 82. . |

Figure 6.20: Area for Example 6.13. Figure 6.21: Area for Example 6.14.
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Gamma and Exponential Distributions

Definition 6.2: | The gamma function is defined by

Ia) = / % e ds, for a > 0.

0

The following are a few simple properties of the gamma function.
(a) O(n) =(n—1)(n—2)--- (1)'(1), for a positive integer n.

Ta see the proof, integrating hy parts with u = 22~ ! and dv = e~* dx, we obtain

Tla)=—e 27! + f e (a—-1)r* 2 dr=(a— 1]/ 7 2e~ dz,
0 0
for a > 1, which yields the recursion formula
INa)=(a-1)T'{a-1).
Gamma  The contimious random variable X has a gamma distribution, with param-
Distribution  eters a and 3, if its density function is given by
1 a—1_—x/F .
e Taran € , >0,
f[.r.‘:a'__ 8) = Bel'a)
0, elsewhere,

where a > 0 and 3 > 0.

19

Figure 6.28: Gamma distributions.

The continuous random variable X has an exponential distribution, with
parameter 3, if its density function is given by

1e—=/8, 0,
zi8) =14 78° : E2
f(=8) {0. elsewhere,

where 3 > 0.

20
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Theorem 6.4: | The mean and variance of the gamma distribution are

Corollary 6.1: | The mean and variance of the exponential distribution are

p=af and ¢ = af?

The proof of this theorem is found in Appendix A.26.

p=p8and o? = 82

Example 6.17:] Suppose that a system contains a certain type of component whose time, in years,
to failure is given by T'. The random variable T' 1s modeled nicely by the exponential
distribution with mean time to failure g = 5. If 5 of these components are installed
in different systems, what is the probability that at least 2 are still functioning at
the end of 8 years?

Solution: The probability that a given component is still functioning after 8 years is given
by
Y :
P(T=8) = —/ e~ t5 dt = e %5 i 0.2,
s

5

21

The Memoryless Property and Its Effect on the Exponential Distribution

PXzt) P(X>tg+t| X =to)

Chi-Squared  The continuous random variable X has a chi-squared distribution, with v
Distribution  degrees of freedom, if its density function is given by

1 w0 /2—1,—1/2 5
fasv) = s e T 0,
elsewhere,

Theorem 6.5: | The mean and variance of the chi-squared distribution are

p=vand o = 2u,

22
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Definition 6.3:

A beta function is defined by

I'(a)I'(8)

1
o Y= o101 _ -1 r — , . B
B(a,3) ./_1 ¥ (1 — )P dr T+ ) for o, 3 =0,

where ['(a) is the gamma function.

Distribution

Theorem 6.6:

1 The continuous random variable X has a beta distribution with parameters
a > 0 and 3 > 0if its density function is given by
Dzl

f(r = mﬁ'c‘_l(l —.2.']"3_[.
4 0, elsewhere.

Note that the uniform distribution on (0, 1) is a beta distribution with parameters

a=1land f=1

The mean and variance of a beta distribution with parameters o and 5 are

__a i aff
B=ayp o = (a+8)2a+3+1)

respectively.

For the uniform distribution on (0,1), the mean and variance are

ool B (L)L) 1
p=yry=zendo T+l 1

23

Distribution

The continuous random variable X has a lognormal distribution if the ran-
dom variable ¥ = In(X') has a normal distribution with mean p and standard

deviation o. The resulting density function of X is

1 Mt 2
C—wihu_rl—#l_. x>0,

1
(z; p,0) = Imaz
flzip, o) {&

1x)
.” \\
e [\ u=o0
| \o=1
|
[ \
04| A
|
|
|
| e
o2y s
| /
{f =
| / =
L/ ! I I L B
4] 1 2 3 4 5
Figure 6.29: Lognormal distributions.
The mean and variance of the lognormal distribution are

e = TR o,
p=e!'" i and g* =77 (&7 —1).

24
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Example 6.22:| Concentrations of pollutants produced by chemical plants historically are known to

Solution:

exhibit behavior that resembles a lognormal distribution. This is important when
one considers issues regarding compliance with government regulations. Suppose
it is assumed that the concentration of a certain pollutant, in parts per million,
has a lognormal distribution with parameters g = 3.2 and ¢ = 1. What is the
probability that the concentration exceeds 8 parts per million?

Let the random variable X be pollutant concentration. Then

P(X >8)=1-P(X <8).

Since In(X) has a normal distribution with mean p = 3.2 and standard deviation
==y

In(8) — 3.2

HXg&:@[ -

] = &(-1.12) = 0.1314.

25

The continuous random variable X has a Weibull distribution, with param-
eters & and 3, if its density function is given by

aBzf-le=2=" 2>,
ca =4 '
f(=z;2,B) {D, elsewhere,

where ar = 0 and § = 0.

Theorem 6.8:

The mean and vanance of the Weibull distribution are

_ =18 " i 2 _ . —2/8 y E _ 1 i
p=a f(l.ﬁ) and 0® = a r 1_'—..3‘ L] 1+,'3 -

26
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fix)
B-35

B=1 g=2
0 05 10 15 20~

Figure 6.30: Weibull distributions (e = 1).

Al for Weibull - The cumulative distribution function for the Weibull distribution is
Distribution  given by
B8
Flz)=1—e", for z = 0,

for @ = 0 and 3 = 0.

Example 6.24:| The length of life X, in hours, of an item in a machine shop has a Weibull distri-
bution with o = 0.01 and 8 = 2. What is the probability that it fails before eight
hours of usage? .

Solution: P(X <8)=F(8)=1- e (0018 — | _ 0,527 = 0.473 A

27

End of Chapter 6
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